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Abstract

Background: The higher prevalence of Asperger Syndrome (AS) and other autism spectrum conditions in males
has been known for many years. However, recent multiplex immunoassay profiling studies have shown that males
and females with AS have distinct proteomic changes in serum.

Methods: Here, we analysed sera from adults diagnosed with AS (males = 14, females = 16) and controls

(males = 13, females = 16) not on medication at the time of sample collection, using a combination of multiplex
immunoassay and shotgun label-free liquid chromatography mass spectrometry (LC-MSF). The main objective was
to identify sex-specific serum protein changes associated with AS.

Results: Multiplex immunoassay profiling led to identification of 16 proteins that were significantly altered in AS
individuals in a sex-specific manner. Three of these proteins were altered in females (ADIPO, IgA, APOAT), seven
were changed in males (BMP6, CTGF, ICAMT, IL-12p70, IL-16, TF, TNF-alpha) and six were changed in both sexes
but in opposite directions (CHGA, EPO, IL-3, TENA, PAP, SHBG). Shotgun LC-MSF profiling led to identification of 13
serum proteins which had significant sex-specific changes in the AS group and, of these, 12 were altered in females
(APOC2, APOE, ARMC3, CLC4K, FETUB, GLCE, MRRP1, PTPA, RN149, TLE1, TRIPB, ZC3HE) and one protein was altered
in males (RGPD4). The free androgen index in females with AS showed an increased ratio of 1.63 compared to
controls.

Conclusion: Taken together, the serum multiplex immunoassay and shotgun LC-MSF profiling results indicate that
adult females with AS had alterations in proteins involved mostly in lipid transport and metabolism pathways, while
adult males with AS showed changes predominantly in inflammation signalling. These results provide further
evidence that the search for biomarkers or novel drug targets in AS may require stratification into male and female
subgroups, and could lead to the development of novel targeted treatment approaches.
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Background

Asperger syndrome (AS) is a subgroup within autism
spectrum conditions (ASCs) [1]. The prevalence of AS
in the general population is about 1% [2,3]. ASC leads to
impairments in reciprocal social interaction and com-
munication, alongside unusually restricted interests and
repetitive behaviour [4], although people with AS develop
language at the normal age and have no general cognitive
delay. Similar to other forms of ASC, the prevalence of AS
is higher in males compared to females with an approxi-
mate 4:1 ratio [5]. This suggests that sex-specific differences
may affect its susceptibility, aetiology and/or manifestation.

In line with this, previous multiplex immunoassay profil-
ing studies targeting specific classes of proteins have iden-
tified diagnosis-sex interactions in serum molecules such
as cytokines, steroid and metabolic hormones, growth
factors and lipid transport in adults with AS [6,7]. In
these studies, females with AS had a higher number
of changes in the levels of lipid and hormone-related
molecules, and males with AS showed more changes in
molecules related to dysfunction of immune or inflam-
matory pathways. However, individuals with AS often
present with co-morbid psychiatric, neurological, gastro-
intestinal, metabolic, cardiovascular, gynaecological or mus-
culoskeletal conditions [8]. This can make interpretation of
the results of proteomic analyses difficult as the findings
may be affected by drug- and lifestyle-related confounding
factors.

Here, we attempt to minimize this possibility by ana-
lyzing samples from people with AS (n=30) and con-
trols (n =29) who were not on medication at the time of
blood collection and accounting for daily lifestyle rou-
tines. In addition, we used a combination of multiplex
immunoassay and shotgun liquid chromatography mass
(LC-MSF) profiling platforms to increase the analytical
coverage to a wider range of protein classes [9]. The main
objective was to identify sex-specific protein alterations in
serum from people with AS compared to controls.

Methods

Clinical samples

Informed written consent was given by all participants.
The protocols were approved by the UK National Health
Service Cambridge Research Ethics Committee and stu-
dies were carried out in accordance with the Declaration
of Helsinki. Recruitment of participants with AS was car-
ried out as described by Schwarz et al. [6] and diagnoses
were made by clinical psychologists or psychiatrists based
on Diagnostic and Statistical Manual of Mental Disorders
IV-Text Review (DSM-IV-TR). All participants completed
the Autism Spectrum Quotient (AQ) and the Empathy
Quotient (EQ) forms [10]. Participants with a family his-
tory of serious mental illness or metabolic, cardiovascular
or inflammatory diseases were excluded to minimise these
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as potential confounding factors. Samples from people
with AS or controls who were not taking medications
(antidepressants, antipsychotics, immunosuppressants, in-
sulin) or using tobacco or marijuana at the time of sample
collection were used in the current study to minimise the
possibility of detecting drug-related proteomic changes
(Table 1). Lifestyle information such as exercise level,
alcohol intake, and oral contraception in females was
also documented (Table 1).

Sample collection

Blood samples were collected into 7.5 mL S-Monovette
serum tubes (Sarstedt; Numbrecht, Germany) and placed
at room temperature for two hours to allow coagulation,
according to standard protocols. After this, the tubes
were centrifuged at 1,100 x g for ten minutes to pellet the
clotted material and other debris. The resulting serum
supernatants were transferred into LoBind Eppendorf
tubes (Hamburg, Germany) and stored at -80°C.

Multiplex immunoassay analysis

Serum samples from drug-free people with AS (n=30)
and controls (n=29) were analyzed using the Human-
MAP panel comprised of immunoassays for 119 analytes
(Additional file 1: Table S1) in a Clinical Laboratory
Improved Amendments-certified laboratory at Myriad-RBM
(Austin, TX, USA) as described previously [6,11]. The as-
says were calibrated using duplicate standard curves of
each analyte and raw intensity measurements converted
to protein concentrations using proprietary software. All
measurements were conducted using randomized sam-
ples under blind conditions to minimize biases or batch
effects.

Mass spectrometry analysis

Depletion of abundant proteins was carried out in 40 pL
of serum using the Human 14 Affinity Removal System
(Agilent Technologies, Santa Rosa, CA, USA) on the AKTA
purifier system (GE Healthcare, Uppsala, Sweden). This
was carried out to increase the detection of higher num-
bers of low abundance proteins that are potentially
masked by the more abundant serum components. The
flow through fractions containing the low abundance pro-
teins were exchanged into 50 mM ammonium bicarbonate
(pH 8.0) using pre-washed 5 kDa-molecular weight cut-off
Centricon tubes (Agilent Technologies; Santa Rosa, CA,
USA). Protein concentrations were determined using the
Biorad DC protein assay according to standard protocols
(Hercules, CA, USA). In order to reduce disulfide bonds
on proteins, samples were incubated for 30 minutes at
60°C with 100 mM dithiothreitol (Sigma Aldrich; Poole,
UK). After this, 200 mM iodoacetamide (2.63 pL; Sigma
Aldrich, Poole, UK) was added to each sample to alkylate
the reduced cysteine residues, by incubation in the dark
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Table 1 Demographics of non-medicated people with Asperger syndrome (AS) and controls used in the study

Male Female

Patient Control Patient Control
Sample number 14 13 16 16
Age (years) 31+9 31+6 33+9 34+5
BMI (kg/m?) 24+3 25+ 4 26+ 5 25+6
Smoking (yes/no) 2/12 3/10 4/12 2/14
Exercise level 5/4/5/0/0 8/3/2/0/0 1/2/10/2/1 6/2/7/1/0
Alcohol 2/3/0/0/4/5 6/1/0/2/1/3 1/1/0/0/3/11 5/5/2/2/1/1
Oral contraception NA NA 7/9 4/12
AQ score 38+ 13 15+6 39+ 13 14+5
EQ score 28 + 14 37+ 14 15+ 16 52+10

Values are represented as mean + standard deviation. BMI = body mass index. Exercise: high activity/moderate activity/low activity/sedentary/NA. Alcohol: 1to 5
units/6 to 10 units/11 to 15 units/16 to 20 units/none/NA. Oral contraception: never/past (not current).

for 30 minutes at room temperature. Proteins were
then digested using sequencing grade modified trypsin
(Promega; Madison, WI, USA) at a ratio of 1:50 (w/w
trypsin/protein) for 17 hours at 37°C. Digestions were
stopped by addition of 1:60 8.8 M HCI to each sample.
Samples were stored at -80°C prior to LC-MSF analysis.

All solvents used for chromatography were of mass
spectrometry grade (Fisher Scientific; Loughborough, UK).
Buffers used were (A) 0.1% formic acid in water and (B)
0.1% formic acid in acetonitrile. Samples were diluted with
buffer A to a final 0.12 pg/pL protein concentration and
injected into the system. Each sample was analysed twice
followed by alternating injections of a blank or a standard
of 25 fmol/pLtryptically-digested yeast enolase (Waters
Corporation; Milford, MA, USA). The samples were ana-
lysed on a nanoAquity ultra-performance liquid chroma-
tography quadrupole time-of-flight (UPLCQTOF) Premier
mass spectrometer (Waters Corporation, Elstree, UK) with
a gradient starting at 97% buffer A (3% buffer B), followed
by ramping to 70% A in 80 minutes, 70% to 5% in 10 mi-
nutes, running isocratically at 5% A for 10 minutes, then
returning to initial conditions over 1 minute. The analytical
column was coupled through a 10 pm fused-silica emitter
(New Objective; Woburn, MA, USA) to the mass spec-
trometer, which was operated in positive V mode (reso-
lution: 10,000 full width at half-maximum). The alternative
scanning, data-independent expression mode (LC-MSF)
was achieved with a setting for the low collision energy of
5 eV and the high collision energy ramped between 15 and
42 eV per scan. Acquisition time in each function was 0.6
seconds. Argon was used as the collision gas. Molecular
ions were mass-corrected using the monoisotopic mass
of the doubly-charged precursor of glufibrinopeptide
B (785.8426 mass/charge), which was infused continu-
ously using a reference spray apparatus.

The ProteinLynx Global Server (PLGS, version 2.4; Waters
Corporation, Elstree, UK) was used for smoothing, centring,

de-isotoping and charge state reduction of mass spectral
peaks. Peptide fragment ions were allocated to peptide
precursor ions based on identical retention times and
elution profiles. For protein identification, an algorithm
described by Li and colleagues was for searching the hu-
man Swiss-Prot database version 57.4 [12]. Time align-
ment was accomplished using the Elucidator™ software
(Rosetta Biosoftware; Seattle, WA, USA) by applying the
PeakTeller algorithm [13]. Peptide and fragment ion
intensities were normalised to the total ion current
and this required detection of these ions in both tech-
nical replicates of each sample and in at least 67% of
the samples within each group. Protein intensities were
calculated by summing the intensities of all peptide ions
(mean values of technical replicates) associated with spe-
cific proteins.

Statistical analysis

Principal component analysis (PCA) was carried out using
the software SIMCA P+, v 2.12 (Umetrics; Stockholm,
Sweden) to identify potential outliers in mass spectrom-
etry data. PCA showed no clustering of the data based on
demographic variables (data not shown). However, sam-
ples did show clustering based on analysis order. There-
fore, protein intensities in mass spectrometry data were
normalised using the median intensity of each batch to re-
move this effect. All other statistical tests were conducted
using the free statistical software package R, v. 2.15.0
(www.r-project.org). Multiplex immunoassay data were
first pre-processed by removing analytes containing more
than 30% missing values, resulting in 33 analytes being
discarded and leaving 114 for analysis. The proportion
of missing values in this dataset was less than 2%.
Remaining missing values were imputed with twice
the maximum or half the minimum analyte concentra-
tions for measurements above and below the limits of
quantitation, respectively. Missing values resulting from
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insufficient sample volume were replaced by the analyte
mean. Both multiplex immunoassay and MS data were
log. transformed to stabilise variance and improve nor-
mality and outliers outside three standard deviations of
the mean were removed. Differences in molecular levels
between individuals with AS and control individuals were
assessed for each analyte using stepwise regression,
with sex, age, BMI, and exercise as additional covariates.
P-values were adjusted to control the false discovery rate
(FDR). Sex-diagnosis interactions were analysed in the
same manner for each analyte. Those analytes with sig-
nificant sex-diagnosis interactions (P< 0.05) were re-
analysed for males and females separately and classified
as being changed in females with AS (female-specific),
changed in males with AS (male-specific), or in both
with opposing directional changes (qualitative inter-
action). Analytes with changes of less than 10% were
discarded. We also carried out Spearman correlation
analyses in order to determine whether any of the
measured serum analytes were correlated with AQ or
EQ scores.

Single reaction monitoring (SRM) mass spectrometry
Candidate proteins identified by label free LC-MSF pro-
filing were retested using single-reaction monitoring
(SRM) on a XevoTQ-S mass spectrometer (Waters Cor-
poration, Elstree, UK) coupled to a nanoAcquityUPLC
system (Waters Corporation, Elstree, UK) as described
previously [14]. This was aimed at providing a technical
replication of the findings. Criteria for selecting candi-
date peptides representing the corresponding proteins
for validation were based on peptide count, uniqueness
and quality of transitions. Three peptides were selected
for each target protein and isotopically-labelled pep-
tides synthesised at JPT Peptide Technologies GmbH
(Berlin, Germany). Data analyses were performed using
the R-package SRM stats [15]. The settings used for group
comparison were ‘restricted biological replication’ and
‘expanded technical replication’.

In silico pathway analysis

The UniProt accession codes of proteins that showed
diagnosis-sex interactions were uploaded into the Ingenuity
Pathways Knowledge Database (IPKB; Ingenuity™ Systems;
Mountain View, CA, USA). The pathways most sig-
nificant to the dataset were determined by automated
overlay of the identified proteins onto predefined path-
way maps in the IPKB. Fisher’s right-tailed exact test
was used to calculate P values associated with the identi-
fied pathways. The significance of the association be-
tween the dataset and canonical pathways was measured
by the ratio of the number of significant molecules di-
vided by the total number of molecules in the canon-
ical pathway and by the Fisher’s exact test P value.

Page 4 of 10

Results

Multiplex immunoassay

Multiplex immunoassay profiling of serum samples re-
sulted in identification of 16 analytes that were present
at significantly different levels between drug-free indivi-
duals with AS (n =30) and controls (n = 29) after adjust-
ment for age, BMI, and exercise (Table 2). The analytes
showing the largest ratiometric differences included neur-
onal cell adhesion molecule that was increased with a ratio
of 1.4 in AS compared to controls, and fatty acid binding
protein and growth hormone that were decreased with
ratios less than 0.5.

We then identified 16 serum proteins changed in a
sex-specific manner in AS. Seven proteins (BMP6, TNF,
TE, CTGE, IL-16, IL-12p70, ICAM-1) were increased
specifically between males with AS (n = 14) and male con-
trols (n = 13) and three proteins (ADIPO, IgA, APOA1)
were decreased in females with AS (n = 16) in comparison
to female controls (n = 16) (Figure 1 and Table 3). In
addition, six proteins (CHGA, TENA, SHBG, PAP, EPO,
IL-3) showed opposite-increased or -decreased concentra-
tions between the AS male and AS female groups. In the
latter case, the differences for SHBG (P= 0.065) and EPO
(P=0.060) did not reach significance between females with
AS and female controls (Figure 1 and Table 3). BMP6
showed the highest male-specific increase in AS compared
to controls at a ratio of 3.04 and IL-3 showed the stron-
gest decrease with a ratio of 0.28. Conversely, IL-3 showed

Table 2 Identification of analytes altered between
individuals with Asperger syndrome (AS) (n = 30) and
controls (n = 29) using multiplex immunoassay analysis

P-value FDR Ratio
Neuronal cell adhesion molecule 0.022 0.19 1.40
IL-5 0.007 0.13 1.28
CD40 0.008 0.13 1.21
Cortisol 0.003 0.088 1.20
TNF-alpha 0.024 0.19 1.20
IL-7 0.012 0.15 1.18
BDNF 0015 0.17 1.16
Sortilin 0.007 0.13 115
Serum glutamic-oxaloacetic transaminase 0.003 0.088 0.82
Apolipoprotein Al 0.018 0.19 0.79
Immunoglobulin M 0.002 0.088 0.73
HB-epidermal growth factor 0.002 0.088 0.70

0.048 0.29 0.60
0.010 0.14 0.60
0.030 0.20 0.50
0.029 0.20 0.39

Eotaxin-3
Ferritin
Fatty acid binding protein

Growth hormone

The results are adjusted for age and BMI. FDR =false discovery rate.
Ratio = AS/control. Grey shading indicates these proteins had a significant
sex-diagnosis interaction.
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Figure 1 Sex-specific and common changes in people with
Asperger syndrome (AS) compared to controls. The red arrows
indicate an increase and the green arrows show a decrease of the
protein in AS relative to controls. The proteins in grey boxes are
changed in both males in females but in opposite directions. The
abbreviations are as indicated in Table 2.

-

the highest female-specific increase with a ratio of 1.87
and APOA1 showed the greatest decrease at a ratio of
0.63 (Table 3).

We found that the levels of SHBG were decreased in
females with AS compared to both males with AS and
controls, which could be associated with higher levels of
free testosterone. We estimated the free testosterone
levels in both males and females by dividing total testos-
terone (measured by the multiplex immunoassay panel)
by the SHBG levels. This is termed the free androgen
index (FAI). In females, the FAI showed an increased ra-
tio of 1.63 (P= 0.0275) in individuals with AS compared
to controls. In males, the FAI was found at a ratio of
0.85 in AS compared to controls although this was not
significant (P= 0.2206). Given the prior association of in-
creased testosterone-related medical conditions in adult
females with ASC [16], we tested the levels of testo-
sterone, SHBG and the FAI in relation to AQ and the
EQ scores in AS using Spearman correlation analysis.
However, this revealed no significant correlations.
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Mass spectrometry

LC-MSF proteome profiling of serum was performed to
identify novel gender-specific serum biomarkers not ana-
lysed using the multiplex immunoassay platform. Using
LC-MSF we measured the levels of 9,068 serum peptides,
which corresponded to 313 proteins using the criteria out-
lined in the methods section. We found 13 proteins with
significant sex-diagnosis interactions, 12 of which (ARMCS3,
PTPA, TLE1l, CLC4K, GLCE, APOC2, ZC3HE, FETUB,
RN149, TRIPB, APOE, MRRP1) were altered specifically
in females with AS compared to female controls. Only
one protein (RGPD4) was altered only in males with AS
compared to male controls (Figure 1, Table 4).

ARMC3 and PTPA showed the highest increases in fe-
males with AS compared to female controls at ratios of
1.29 and 1.23, respectively. MRRP1 showed the greatest
decrease in females with AS compared to female con-
trols at a ratio of 0.78. The finding of increased APOE
levels in females with AS compared to female controls
was the most significant result in this study (P= 0.0002).
Because the FDR for APOE was 0.72, we attempted to
validate the findings using an orthogonal analysis as de-
scribed in the methods section. An SRM mass spectrom-
etry assay was established for APOE and this confirmed
that it was increased in females with AS compared to fe-
male controls with a ratio change of 1.27 (P= 2.13E"%),
which was more robust than the findings for the
LC-MSE study (1.11 fold) (Figure 2).

In silico pathway analysis

The Uniprot accession codes for 19 proteins associated
with females with AS were uploaded into the IPKB to iden-
tify the most significant networks, diseases and canonical
pathways associated with the dataset. Note that no code for
IgA was uploaded as this was not present in the database.
A single network was identified which showed interactions
for nine of these proteins (ADIPO, APOA1l, APOC2,
APOE, EPO, IL-3, PAP, SHBG, TENA) and the predomin-
ant function associated with these proteins was lipid metab-
olism. The most significant disease was listed as ‘cancer’,
although this was due to the effects on cell proliferation
(P= 59E-06 - 5.0E-02), accounted for by nine proteins
(ADIPO, APOA1, APOE, ARMC3, CHGA, EPO, IL-3,
PAP, TENA). The most significant canonical pathway was
EXR/RXRsignalling (1.9E-06) which was covered by four
proteins (APOA1, APOC2, APOE, FETUB). Of the 13 male
AS-associated proteins, nine of these (BMP6, CTGE, EPO,
ICAM1I, IL-3, IL-16, SHBG, TENA, TNF) were associated
with a single network with a predominant function of cell
to cell signalling. The top disease was inflammation signal-
ling (P= 2.0E-06 - 4.2E-03; seven proteins: EPO, ICAM]1,
IL-3, IL-12p70, IL-16, TENA, TNF) and the top canonical
pathway was differential regulation of cytokine production
(P= 3.8E-07; three proteins: IL-3, IL-12p70, TNF).
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Table 3 Summary of significant sex x diagnosis interactions of serum molecules measured by multiplex immunoassay

Interaction Males Females
Protein P-value g-value Ratio P-value Ratio P-value
Bone morphogenic protein-6 (BMP6) 0.023 0.193 3.04 0.001 0.85 0.703
Tumour necrosis factor-alpha (TNF) 0.017 0.191 1.45 0.003 1.02 0.192
Tissue factor (TF) 0.012 0.154 1.39 0.001 0.73 0.151
Connective tissue growth factor (CTGF) 0.001 0.037 1.29 0.001 0.83 0.091
Interleukin-16 (IL-16) 0.025 0.196 117 0.008 0.88 0.134
Interleukin-12p70 (IL-12p70) 0.005 0.070 1.16 0.008 091 0.074
Intracellular adhesion molecule-1 (ICAM1) 0.027 0.196 1.15 0.010 1.00 0.343
Chromogranin A (CHGA) <0.001 0.008 1.70 0.001 0.77 0.019
Tenascin C (TENA) 0.002 0.037 1.28 0.049 0.66 0.007
Sex hormone binding globulin (SHBG) 0.026 0.191 1.20 0.036 0.76 0.065
Prostatic acid phosphatase (PAP) 0.004 0.058 1.19 0.040 0.82 0.028
Erythropoietin (EPO) 0.044 0.282 0.49 0.021 1.36 0.060
Interleukin-3 (IL-3) <0.001 0.022 0.28 0.006 1.87 0.039
Adiponectin (ADIPO) 0.037 0.251 1.19 0453 0.77 0.037
Immunoglobulin A (IgA) 0.022 0.192 1.05 0.852 0.73 0.006
Apolipoprotein AT (APOAT) 0.002 0.037 1.05 0.857 0.63 0.001

Indicated are the P-values and FDR (false discovery rate) of the sex-diagnosis interactions and the separate ratio (AS/control; calculated using geometric means)
changes with P-values in males in females. Values in bold font indicate significant sex differences in individuals with AS and typical individuals. Analytes in italic
style font were identified in our previous study of AS individuals, which did not account for potential drug effects [6]. In the overlapping region, changes in

molecular levels are in opposite directions in males and females.

Discussion

This is the first molecular profiling study using a com-
bination of multiplex immunoassay and mass spectrom-
etry to investigate sex-specific differences in serum from
adults with AS compared to typical controls. All partici-
pants were drug-free at the time of sample collection.
Specifically, samples were not analysed from individuals

taking medications or substances such as antidepressants,
antipsychotics, immunosuppressants, antidiabetics, tobacco
or marijuana. This study design increases the chances that
the identified findings are linked to the underlying path-
ways altered in AS and minimises possible confounding
effects of drug treatment. Analysis of the combined cohort
led to identification of 16 analytes that were present at

Table 4 Summary of significant sex-diagnosis interactions of serum molecules measured by LC-MSprofiling

Males Females
Code Protein Interaction FDR Ratio P-value Ratio P-value
RGPD4 RANBP2-like and GRIP domain containing 5 0.015 0.723 0.89 0.016 1.07 0.893
ARMC3 Armadillo repeat containing 3 0.002 0.291 0.88 0.183 1.29 0.001
PTPA PP 2A activator, reg subunit 4 0.038 0.723 0.97 0.681 1.23 0.001
TLE1 Transducin-like enhancer of split 1 0.049 0.723 0.90 0394 1.22 0.026
CLC4K CD207 molecule, langerin 0.017 0.723 0.96 0.720 1.20 <0.001
GLCE Glucuronic acid epimerase 0.017 0.723 0.88 0.231 1.19 0.018
APOC2 Apolipoprotein C2 0.005 0.522 0.92 0.254 1.19 0.001
ZC3HE Zinc finger CCCH-type containing 14 0.039 0.723 0.97 0.383 1.16 0.020
FETUB Fetuin B 0.035 0.723 0.96 0572 1.15 0.004
RN149 Ring finger protein 149 0.044 0.723 1.02 0.588 1.14 0.042
TRIPB Thyroid hormone receptor interactor 11 0.012 0.723 094 0610 1.13 0.027
APOE Apolipoprotein E 0.030 0.723 0.99 0.851 1.11 <0.001
MRRP1 RNA G9 methyltransferase domain cont 1 0.044 0.723 1.06 0.592 0.78 0.035

Indicated are the P-values and FDR (false discovery rate) of the interactions and the separate ratio (AS/control; calculated using geometric means) changes with
P-values in males in females. Values in bold font indicate significant differences between AS and typical individuals by sex.
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Figure 2 Validation of changes in apolipoprotein E levels in
females with Asperger syndrome (AS) (n = 16) compared to
female controls (n = 16) using Selective Reaction Monitoring
(SRM) mass spectrometry.

significantly different levels in AS compared to controls.
Several of these molecules have been implicated previously
in ASC, such as neuronal cell adhesion molecule [17], cor-
tisol [18], TNF-alpha [19], brain-derived neurotrophic fac-
tor [20], IL-5 [21], eotaxin-3 [22], immunoglobulin M [23],
ferritin [24] and growth hormone [25]. In the next phase
of the study, serum samples from approximately equal
numbers of males and females were analysed to allow de-
termination of sex-specific changes. This resulted in identifica-
tion of 29 proteins with significant sex-diagnosis interactions.
Fifteen of these (ADIPO, APOA1, APOC2, APOE, ARMC3,
CLC4K, FETUB, GLCE, IgA, MRRP1, PTPA, RN149, TLE1,
TRIPB, ZC3HE) showed altered levels specifically in female
patients, eight (BMP6, CTGE IL-16, IL-12p70, ICAM-1,
RGPD4, TE, TNF) were altered in males, and six (CHGA,
TENA, SHBG, PAP, EPO, IL-3) showed opposite changes in
females and males. For the multiplex immunoassay analysis,
the changes in 11 proteins (APOA1, CHGA, CTGE, EPO,
IL-3, IL-12p70, ICAM1, SHBG, TENA, TF and TNF)
were consistent with those found in our previous study
[6]. This suggests that the sex-specific alterations in these
molecules were not influenced by drug effects.

In silico pathway analysis revealed that the predomin-
ant pathway affected in females with AS was lipid me-
tabolism. This is in line with previous studies showing
alterations in circulating lipids such as cholesterol in in-
dividuals with ASC [26,27]. All steroids are synthesized
from cholesterol and, in the brain, these are involved in
regulation of neuronal processes such as GABA, and
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NMDA receptor signalling, myelin formation and synap-
togenesis [28]. This may be of relevance to the current
findings since diseases marked by impaired cholesterol bio-
synthesis, such as Smith-Lemli-Opitz Syndrome (SLOS),
are associated with an increased incidence of ASC [29].
Furthermore, treatment of SLOS patients with cholesterol
leads to fewer autistic behaviours, infections, and symp-
toms of irritability and hyperactivity, with improvements in
physical growth, sleep and social interactions. Consistent
with potential effects on lipid metabolism, we found that
females with AS had altered levels of three members of the
apolipoprotein family (APOA1, APOC2, APOE), which are
involved in cholesterol transport. There is extensive evi-
dence that the levels of some apolipoproteins are disturbed
in ASC and other conditions [28]. The present study sug-
gests these effects may be more prominent in females with
ASC. This is also in line with other studies which have
shown that APOAL levels are reduced in women with
polycystic ovary syndrome (PCOS), which has an increased
prevalence in ASC relative to the general population [30].

We also found female-specific changes in ADIPO, GLCE,
FETUB and SHBG, which all have functions related to
lipid biosynthesis or metabolism [31-34]. In addition to its
role in lipid-related pathways, SHBG also serves as the
main transport protein for sex steroids such as oestrogen
and testosterone [35]. According to the foetal androgen
theory, high levels of testosterone and other steroid andro-
gens during prenatal brain development can contribute to
the development of ASC [16]. Previous studies have dem-
onstrated that there is a correlation between high foetal
testosterone concentrations with evidence of more mascu-
linisedbehaviour in later life [16] and an increased number
of autistic traits in the normal population [36]. Our find-
ing of elevated levels of SHBG in females may indicate
higher levels of free testosterone. This is of potential inter-
est as several studies have found that administration of
drugs such as statins can reduce the effects of hyperandro-
genemia in conditions such as PCOS that are associated
with high testosterone levels [37-39]. One report has hy-
pothesized that statins may be a potential novel therapy in
autism and epilepsy [40]. In addition, insulin-sensitizing
agents appear to be efficacious in reducing testosterone
levels and alleviating other symptoms of PCOS [41]. If
such treatments are effective for ASC, the present results
suggest that it may be more appropriate to apply these
specifically in the case of females with AS. However, cau-
tion is needed in extrapolating from the current results as
these are derived from adults and we do not know if these
would hold for younger individuals. Nor do we make
claims for treatment implications as side-effects have yet
not been fully evaluated.

Most of the remaining proteins changes specifically
in females identified by the combined proteomic pro-
filing platforms are involved in regulation of cell growth,
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differentiation, survival or apoptosis [42-48]. This included
changes in CHGA, EPO, PAP, PTPA, TLE1, RN149 and
TRIPB. The others have roles in immune system function
(IgA, IL-3, TENA, CLC4K [49,50]), regulation of brain-
specific mRNAs (ZC3HE [51]) transfer RNA processing
(MRRP1 [52]) or cell adhesion and mobility (ARMC3
[53]). Previous studies have shown a reduction of IgA
levels in subgroups of people with ASC although the study
design did not test for sex differences [49].

The majority of proteins that showed differences in
males with AS specifically were associated with inflam-
mation pathways. These included TNEF-alpha, which has
previously been identified in children with ASC, although
not in a sex specific manner [54]. Effects of inflammation
are identified frequently in studies of ASC and this could
be due to the high proportion of males that are normally
analysed in these studies. For example, previous studies
found that ICAM-1 was decreased in autism [55], al-
though we showed that it was increased significantly in
adult males with AS. Other inflammation-related proteins
that were found to be altered specifically in males with AS
were TF, CTGE, IL-16 and IL-12p70 [56-58]. The finding
of an inflammatory signature in males may have potential
applications for a stratified medical approach. For ex-
ample, males with AS exhibiting immune dysfunction
might be candidates for treatment with anti-inflammatory
drugs, subject to normal safety checks. Recently, an open
label pilot study showed that treatment with a combin-
ation of the flavonoids luteolin and quercetin seemed to
be effective in reducing autistic symptoms in children,
with no major adverse effects [59]. In addition, a rando-
mised double-blind placebo-controlled trial showed that a
combination of risperidone and celecoxib was superior to
risperidone alone in treating irritability, social withdrawal,
and stereotypy of children with autism [60].

We also found that two proteins associated with other
pathways were altered specifically in males with AS. These
were BMP6 and RGPD4. BMP6 has been associated
previously with proliferation and differentiation of cells
[61] and RGPD4 belongs to family of proteins involved in
intracellular trafficking and sorting [62]. Finally, six pro-
teins (CHGA, TENA, SHBG, PAP, EPO and IL-3) were
changed in both males and females with AS, although
these changes occurred in opposite directions. Taken to-
gether, these findings provide further evidence for marked
differences in the underlying affected pathways between
males and females with AS.

There are several limitations to this study. First, there
is a potential bias in the molecular classes of the investi-
gated molecules. This is based on the proteins targeted
by the multiplexed immunoassay and mass spectrometry
platforms that do not cover all functional classes of pro-
teins. Therefore, it is possible that analysis of a different
selection of molecules would lead to different conclusions
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from those drawn in this study. Another limiting factor
was the small number of clinical serum samples tested.
This was due to the rarity of such samples that could be
obtained using strict standard operating procedures from
both individuals with AS and matched controls. Also, the
fact that this study included only AS individuals who were
not on medication could result in a selection bias. For ex-
ample, this could mean that samples from the less severe
cases were tested, such as those without associated anxiety
or depression. In addition, as mentioned earlier, the
current study has only investigated adults so cannot ac-
count for age-related differences that are likely to be im-
portant in ASC.

Conclusion

In conclusion, we have identified sex-specific proteomic
changes in sera from adults with AS. Females showed
changes in proteins mainly associated with lipid trans-
port and metabolism, including FAI, and males showed
changes predominantly in inflammation pathways. Fur-
ther exploration is warranted into the mechanisms by
which these sexually dimorphic molecular phenotypes in
AS arise. This may lead to deeper insights into the well-
established sex differences in the clinical manifestation
[63] and brain structure [64] and course of ASC. This
may have implications for the development of novel
targeted treatment approaches for improved outcomes,
and for understanding sex-linked aetiological factors in
autism [65].

Additional file

Additional file 1: Analytes measured using multiplex immunoassay
platform.
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