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Abstract

Background: Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with
autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment,
thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the
biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the
mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and
function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore,

we carried out a detailed study involving gene expression and genetic association studies of genes related to
diverse mitochondrial functions.

Methods: For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex
(MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue
Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes
related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used
the delta delta Ct (AACt) method for quantification of gene expression. DNA samples from 841 Caucasian and

188 Japanese families were used in the association study of genes selected from the gene expression analysis.
FBAT was used to examine genetic association with autism.

Results: Several genes showed brain region-specific expression alterations in autism patients compared to controls.
Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27)
showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066)
and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese
samples, respectively. The expression of DNAJCT19, DNMIL, LRPPRC, SLC25A12, SLC25A14, SLC25A24 and TOMM20 were
reduced in at least two of the brain regions of autism patients.

Conclusions: Our study, though preliminary, brings to light some new genes associated with MtD in autism.
If MtD is detected in early stages, treatment strategies aimed at reducing its impact may be adopted.
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Background

Autism is a complex neurodevelopmental disorder char-
acterized by deficiencies in social interaction and com-
munication, and repetitive and stereotyped behaviors.
Autistic disorder, Asperger syndrome, and pervasive
developmental disorder-not otherwise specified (PDD-
NOS) comprise a heterogeneous group of neurodevelop-
mental disorders known as autism spectrum disorders
(ASD). The abnormalities are usually identified in the
early years of childhood and often coexist with impair-
ments in cognitive functioning, learning, attention and
sensory processing. According to a recent report, the
prevalence of this disorder has risen to 1 in 110, with a
male to female ratio of 4.5:1 [1].

A growing body of evidence from biochemical and
neuroimaging studies has suggested that a disturbed
brain bioenergetic metabolism underlies the pathophysi-
ology of autism in some cases. Magnetic resonance spec-
troscopy studies have shown, in the brain of autism
patients, abnormal levels of metabolites relating to brain
bioenergetics, such as decreased levels of phosphocrea-
tine and N-acetyl-aspartate, and elevated lactate [2,3].

Mitochondria serve as the energy powerhouses of
eukaryotic cells, since they generate most of the adeno-
sine triphosphate (ATP), the source of chemical energy
in cells. The findings of abnormal brain bioenergetics,
therefore, support an involvement of mitochondrial dys-
function (MtD) in the pathogenesis of ASD [4]. Dimin-
ished levels of ATP have been observed in autism brain
[2]. Rats induced for MtD have been found to exhibit
certain brain, behavioral and metabolic changes con-
sistent with ASD, including microglial activation,
reduced levels of glutathione, repetitive behaviors, social
interaction deficits, hyperactivity and oxidative stress
(OS) [5-8].

In a systematic review and meta-analysis, MtD was
observed in approximately five percent of children with
ASD; developmental regression, seizures, motor delay
and gastrointestinal abnormalities were found to be
significantly more prevalent in children with ASD/MtD
as compared with the general ASD population [9].
Defective lymphocytic mitochondria [10] and ultrastruc-
tural abnormalities of mitochondria [11,12] have
been reported in autism. Nutritional supplements (for
example, carnitine, vitamin B) and/or antioxidants
(for example, co-enzyme Q10) have been found to be
beneficial in the treatment of some children with ASD/
MtD [13-15].

Recent studies have reported brain region-specific def-
icits of mitochondrial electron transport chain com-
plexes in autism [16,17]. Upregulated expression of the
mitochondrial aspartate/glutamate carrier (SLC25A12)
[18,19], and evidence of hypoxia, as measured by a re-
duction in the anti-apoptotic protein Bcl-2 and an
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increase in the pro-apoptotic protein p53 [20,21], has
also been reported in autism brain.

Several of the previous studies of MtD in autism
were restricted to the biomarkers of energy metabol-
ism, while most of the genetic studies were based on
mutations in the mitochondrial DNA (mtDNA). Des-
pite the mtDNA, most of the proteins essential for
mitochondrial replication and function are encoded
by the genomic DNA; so far, there have been very
few studies of those genes. We aimed at elucidating
the role of MtD in the pathogenesis of autism. Using
the postmortem brains of autism patients and healthy
controls, we compared the expression of 84 genes
involved in diverse functions of the mitochondria
such as, biogenesis, transport, translocation and apop-
tosis. Furthermore, we analyzed the genetic associ-
ation of three of these genes with autism, in two
independent studies involving family-based samples of
different origins.

Methods

Gene expression studies of human postmortem brains
Postmortem brain tissues

Postmortem brain samples of autism patients and
healthy controls were provided by the Autism Tissue
Program (http://www.autismtissueprogram.org), NICHD
Brain and Tissue Bank for Developmental Disorders
(NICHD BTB; Baltimore, MD, USA; http://medschool.
umaryland.edu/btbank/) and Harvard Brain Tissue Re-
source Center (HBTRC; Belmont, MA; http://www.
brainbank.mclean.org/). Frozen tissue samples from an-
terior cingulate gyrus (ACG), motor cortex (MC) and
thalamus (THL) were used in the study. Demographic
characteristics of the samples (ACG: eight autism, ten
controls; MC: seven autism, eight controls; THL: eight
autism, nine controls) are described in Table 1.

The difference in age and postmortem interval (PMI)
between the autism and control groups was examined
by t-test. Fisher’s Exact test was used to examine the dif-
ference in sex distribution between the two groups (see
Additional file 1).

RNA extraction

The brain tissues (approximately 75 mg obtained by
macrodissection) were homogenized by ultrasonication,
and total RNA was extracted using TRIzol™ Reagent
(Invitrogen, Carlsbad, CA, USA) in accordance with the
manufacturer’s protocol. The RNA samples were further
purified using an RNeasy™ Micro Kit (QIAGEN GmbH,
Hilden, Germany) following the manufacturer’s instruc-
tions; this protocol includes a DNase treatment step.
The quantity (absorbance at 260 nm) and quality (ratio
of absorbance at 260 nm and 280 nm) of RNA were esti-
mated with a NanoDrop ND-1000 Spectrophotometer
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Table 1 Postmortem brain tissue information
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Sample ID* Diagnosis Age (years) Gender PMI (hours) Race Cause of death Brain regions®
1065 Control 15 M 12 Caucasian Multiple injuries ACG, THL
1297 Control 15 M 16 African American Multiple injuries ACG, MC, THL
1407 Control 9 F 20 African American Asthma ACG, MC, THL
1541 Control 20 F 19 Caucasian Head injuries ACG, MC, THL
1649 Control 20 M 22 Hispanic Multiple injuries ACG, MC, THL
1708 Control 8 F 20 African American Asphyxia, multiple injuries ACG, MC, THL
1790 Control 13 M 18 Caucasian Multiple injuries ACG

1793 Control 11 M 19 African American Drowning ACG, MC, THL
1860 Control 8 M 5 Caucasian Cardiac Arrhythmia ACG

4543 Control 28 M 13 Caucasian Multiple injuries MC, THL
4638 Control 15 F 5 Caucasian Chest injuries ACG

4722 Control 14 M 16 Caucasian Multiple injuries MC, THL

797 Autism 9 M 13 Caucasian Drowning ACG, THL
1638 Autism 20 F 50 Caucasian Seizure ACG, MC, THL
4231 Autism 8 M 12 African American Drowning ACG, MC, THL
4721 Autism 8 M 16 African American Drowning ACG, MC, THL
4899 Autism 14 M 9 Caucasian Drowning ACG, MC, THL
5000 Autism 27 M 83 NA NA ACG, MC, THL
6294 Autism 16 M NA NA NA ACG, MC, THL
6640 Autism 29 F 17.83 NA NA ACG, MC, THL

2Autism Tissue Program (ATP) identifier; ®Brain regions for which, each sample was available; ACG, anterior cingulate gyrus; F, female; M, male; MC, motor cortex;

NA, not available; PMI, postmortem interval; THL, thalamus.

(Scrum, Tokyo, Japan). As per the requirements for the
subsequent array experiment, the following criteria were
met for all of the RNA samples: 1) A260:A230 ratio,
>1.7; 2) A260:A280 ratio, between 1.8 and 2.0 (the A260:
A280 ratio of all our RNA samples were in the range
of 2.0 to 2.1), and 3) concentration of total RNA,
>40 ng/pl.

First strand cDNA synthesis

First-strand cDNA was synthesized from 500 ng of total
RNA using the RT? First Strand Kit (SABiosciences,
Frederick, MD, USA) following the manufacturer’s
protocol. The kit contains a genomic DNA elimina-
tion step and a built-in external RNA control that
helps monitor reverse transcription efficiency and
tests for contaminating inhibitors during quantitative
PCR (qPCR).

qPCR

We used the RT? Profiler™ PCR Array Human Mito-
chondria (SABiosciences) for quantifying the expression
of 84 genes related to the biogenesis and functions of
mitochondria. The array also has five reference genes
(beta-2-microglobulin (B2M), hypoxanthine phosphori-
bosyltransferase 1 (HPRTI), ribosomal protein L13a
(RPL13A), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), and actin beta (ACTB)), three reverse

transcription controls (RTCs), three positive PCR con-
trols (PPCs), and one genomic DNA control (GDC),
making up to a total of 96 assays. The details of the
genes are provided in Additional files 2 and 3. The 384-
well format of the array includes four replicates of each
of the 96 assays. It makes use of the SYBR™ Green
method of qPCR analysis. The qPCR reactions were car-
ried out according to the manufacturer’s protocol, in
ABI PRISM 7900HT SDS (Applied Biosystems (ABI),
Foster City, CA, USA).

Data analysis

The threshold cycle (Ct) values obtained from qPCR
were analyzed by the AACt method using RT* Profiler
PCR Array Data Analysis (Microsoft Excel-based pro-
gram of SABiosciences). It calculates:

1) ACt of each gene = Ct of gene of interest - average
Ct of chosen reference genes

2) AACt for each gene across two groups; AACt = ACt
(autism group) - ACt (control group)

3) fold-change for each gene from control group to
autism group as 2 " (-AACt)

Based on the Kolmogorov-Smirnov test, the expression
of all genes was found to follow a normal distribution.
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Therefore, a t-test, which was also the default option in
our data analysis program, was used to examine any sig-
nificant difference in gene expression between the con-
trol and autism groups.

The statistical program also performs the following
functions: 1) interprets all Ct values >35 as a negative
call; 2) examines genomic DNA contamination in the
samples based on the Ct of GDC (Ct <35 will indicate
genomic DNA contamination); 3) examines the presence
of impurities in RNA samples based on the Ct value of
PPC (Ct should be 20 + 2 on each array and should not
vary by more than two cycles between the arrays being
compared); and 4) interprets any inhibition of reverse
transcription based on the Ct values of RTC and PPC
(values <5 for Ct RTC - Ct PPC is indicative of no ap-
parent inhibition).

Genetic association study

An association study, rather than deep sequencing, is
considered as a cost-effective approach for studying
complex traits like autism.

AGRE subjects

841 pedigree samples (3211 individuals in total) were
obtained from Autism Genetic Resource Exchange
(AGRE; http://www.agre.org; Los Angeles, CA, USA)
[22]. This includes 1467 patients (1178 males; 289
females) with autism. Pedigree information for each in-
dividual, along with the diagnoses based on Autism
Diagnostic Interview-Revised (ADI-R) [23], are available
in the AGRE website. Families with a non-idiopathic aut-
ism flag (for example, fragile-X, abnormal brain imaging
results, dysmorphic features, birth trauma) recorded for
any of its members were excluded from the study.

Japanese subjects

The aforementioned AGRE samples were predominantly
of Caucasian origin. Therefore, Japanese samples were
used in an effort to replicate the AGRE genetic associ-
ation results in samples of a different ethnicity. The
Japanese trio samples included 188 children with ASD
[gender: 155 males, 33 females; age: 10.49 + 4.75 years
(mean * SD); IQ: 82.06 + 26.6] and both parents for
each child. All of the subjects were Japanese, born and
living in the areas of central Japan including Chukyo,
Tokai and Kanto. The purpose of the study was fully
explained to the participants, and written informed con-
sent was obtained. This study was approved by the Eth-
ics Committee of Hamamatsu University School of
Medicine. The diagnosis of autism was based on ADI-R
[23] and DSM-IV-TR [24]. We are licensed to privately
use a Japanese version of ADI-R by Professor C. Lord.
ADI-R scores were available for 100 patients. All of
the autistic individuals underwent screening to exclude
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comorbid psychiatric illnesses (for example, schizophrenia,
affective disorders, mental retardation, and personality or
behavioral disorders) by means of the Structured Clinical
Interview for DSM-IV (SCID) [25]. Individuals with a his-
tory of neurological disorders (for example, epilepsy, head
injury) or genetic disorders (for example, fragile X syn-
drome, tuberous sclerosis) were excluded.

Single nucleotide polymorphism (SNP) selection

The genomic structures of metaxin 2 (MTX2; 2q31.1),
neurofilament, light polypeptide 68 kDa (NEFL; 8p21.2),
and solute carrier family 25, member 27 (SLC25A27;
6p12.3) were based on the University of California, San-
tacruz (UCSC; http://genome.ucsc.edu/) February 2009
draft assembly of the human genome. MTX2 (68.626 kb)
consists of 11 exons, NEFL (5.664 kb) of 4 exons, and
SLC25A27 (25.238 kb) of 9 exons. SNPs (minor allele
frequency >0.1) for the association study were selected
from the International HapMap Project (http://www.
hapmap.org) database on Caucasian and Japanese popu-
lations. Additional file 4 gives the list of SNPs chosen for
the three genes using the pairwise tagging option of Hap-
loview v4.1 (http://www.broad.mit.edu/mpg/haploview).

Genotyping

Assay-on-Demand/Assay-by-design  SNP  genotyping
products (ABI) were used to score genotypes, based on
the TagMan™ assay method [26]. Genotypes were deter-
mined in ABI PRISM 7900HT SDS (ABI), and analyzed
using SDS v2.0 software (ABI).

Statistical analysis

FBAT v2.0.3 (http://biosunl.harvard.edu/~fbat/fbat.htm)
was used to examine the associations of SNPs with aut-
ism. FBAT-MM option was used for multimarker test.
FBAT provides valid tests of association in the presence
of linkage even when using multiple affected siblings
from families of variable structure. In addition to per-
forming tests of association for individual markers,
FBAT allows for tests of association with haplotypes that
may be phase ambiguous. Linkage disequilibrium (LD)
plots based on D7 values were constructed using Haplo-
view. Haplotype association was also examined using
this software. Power analysis was done using the Genetic
Power Calculator (http://pngu.mgh.harvard.edu/~purcell/
gpc/dtdt.html).

Results

Gene expression analysis using human postmortem

brain samples

There was no significant difference in age, postmortem
interval (PMI) or sex distribution between the autism
and control groups in any of the brain regions analyzed
(see Additional file 1).
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In the qPCR experiment, genomic DNA contamin-
ation was not observed for any of the RNA samples; Ct
GDC was >35 for all the samples, indicating that gen-
omic DNA contamination, if present, was too low to
affect the gene expression results. Ct PPC was 20 + 2 for
all the arrays compared, showing the apparent absence
of impurities in the RNA samples. Further, there was no
indication of any inhibition of reverse transcription for
any of the samples, since Ct RTC - Ct PPC was <5 for
all the samples.

For normalization of gene expression, the following
reference genes were selected for the various brain
regions: 1) ACG: RPLI3A, GAPDH and ACTB; 2) MC:
B2M, RPLI3A, GAPDH and ACTB; 3) THL: B2M,
HPRT1 and GAPDH. The chosen reference genes for
each brain region did not show any significant difference
in expression between the control and autism groups.

We observed brain region-specific alterations in the
expression of several genes in the autism group com-
pared to the control group (Table 2). A total of 22 genes
in ACG, 15 genes in MC and 12 genes in THL showed
aberrant expression in autism patients compared to con-
trols. These genes belong to the following functional
groups: 1) membrane polarization and potential, 2)
mitochondrial transport, 3) small molecule transport, 4)
targeting proteins to mitochondria, 5) mitochondrion
protein import, 6) outer membrane translocation, 7)
inner membrane translocation, 8) mitochondrial fission
and fusion, 9) mitochondrial localization, and 10) apop-
tosis (Table 2). A majority of the genes showed a
reduced expression in autism as compared to the con-
trols. Eleven genes each belonging to the SLC25A mito-
chondrial transporter family and TIMM/TOMM family
of translocases, showed altered expression in autism.

The genes MTX2, NEFL and SLC25A27showed con-
sistently reduced expression in all the three brain
regions (ACG, MC and THL) of autism patients
(Figure 1). The most pronounced reduction, in autism
brains, was observed for NEFL [-4.208 fold (P = 0.014)
in ACG; -2.935 fold (P = 0.025) in MC; -6.006 fold (P =
0.012) in THL].

The expression of DNAJC19, DNMIL, LRPPRC,
SLC25A12, SLC25A14, SLC25A24 and TOMMZ20 were
consistently reduced in at least two of the brain regions
of autism patients compared to controls (Table 2).

None of the P values of altered expression of genes
withstand multimarker testing (conventional Bonferroni
approach).

Genetic association study

Power analysis showed that the AGRE sample size of
841 families provided 37.3% and 95.5% power to detect
an odds ratio of 1.2 and 1.5 respectively, for an allele fre-
quency of 0.156 at an « of 0.05. However, the sample
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Table 2 Genes with altered expressions in autism
postmortem brains

Gene Anterior Motor Cortex Thalamus
Cingulate Gyrus
Fold P Fold P Fold P
change value* change value* change value*

Alp Pde —1473 0048

BCL2 &b 1356 0.045

DNAJC19 Pde -1868 0037 —1520 0030

DNMIL Y -1658 0020 —1603 0045

HSPI0AAT ® 1.662 0.044

LRPPRC'! —1486 0025 -1530 0018

MFN2 B9 1446 0021

MIPEP Bee —2003 0012

MTX2 P —-1795 0044  —2055 0017 —2511 0002

NEFL —4208 0014 —2935 0025 —6006 0012

RHOT2'! -1338 0019

SLC25A12¢  —=2112 0013 —1913 0008

SLC25A14¢  —1876 0034  —1924 0010

SLC25A15¢  —1402 0036

SLC25A22¢  —2061  0.007

SLC25A24 © -1690 0008 —1625 0019

SLC25A25 © 1830 0044

SLC25A27 € —2132 0025  —2167 0042 2644 0026

SLC25A3 © -1668 0020

SLC25A37 € 1973 0046

SLC25A4 € —1614 0034

SLC25A5 © 1548 0027

sop2’ 3919 0.036

TIMMI7AS — —1809 0011

TIMMI7BS  —1601  0.006

TIMM23 9 —~1734 0022

TIMM44 9 1769 0034

TIMMS50 © -1513 0045

TIMMB8A 9 —1612 0021

TIMM9 9 —-1940 0010

TOMM20 -1812 0025 -1745 0017

ToMM22 1450 0024

TOMM34 -1995 0002

TOMM70AT  —1525 0041

P53 P 1769 0021

TSPO P4 1.720 0037

2Membrane polarization and potential; PMitochondrial transport; “Small
molecule transport; dTargeting proteins to mitochondria; *Mitochondrion
protein import; fOuter membrane translocation; %Inner membrane
translocation; "Mitochondrial fission and fusion; 'Mitochondrial localization;
JApoptotic genes; "P values were calculated by t-test.

size of Japanese trios (188 trios) was underpowered to
detect an association.

NEFL showed a nominal association with autism in the
AGRE samples (Table 3; Figure 2). The SNP rs2979704 in
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Figure 1 Reduced expression of MTX2, NEFL and SLC25A27 in autism brain. Comparison of the expression of MTX2, NEFL and SLC25A27 in
the various brain regions of autism patients and healthy controls. MTX2, NEFL and SLC25A27showed significantly reduced expression in all the
three brain regions of autism patients. The P values (t-test) are given at the top right corner of each graph. The y-axis of each graph represents
the relative expression of the respective gene normalized to the reference genes. The gene expression is normalized against the average Ct of
the chosen reference genes for each brain region. The following reference genes were selected for the various brain regions: a) anterior cingulate
gyrus (ACG): RPL13A, GAPDH and ACTB b) motor cortex (MC): B2M, RPL13A, GAPDH and ACTB ¢) thalamus (THL): B2M, HPRTT and GAPDH.

the untranslated region (UTR) of exon 4 showed a signifi-
cant association with autism (P = 0.038; Z-score 2.066).
After multimarker testing, there was a tendency for asso-
ciation (P = 0.083). No significant haplotype association
was observed. There was no association of NEFL with aut-
ism in the Japanese samples (see Additional file 5.1).

SLC25A27 showed a nominal association with autism
in Japanese samples (Table 4). The SNP rs6901178 in
intron 4 showed an association with autism (P = 0.046;
Z-score 1.990. After multimarker testing, there was a
tendency for association (P = 0.073). No significant
haplotype association was observed. There was no asso-
ciation of SLC25A27 with autism in the AGRE samples
(see Additional file 5.2).

MTX2 did not show any significant association
with autism in the AGRE or Japanese samples (see Add-
itional files 5.3 and 5.4).

Discussion

Our study of MtD in autism involves a wide array of
genes related to diverse mitochondrial functions. We re-
port brain region-specific alterations in the expression of
these genes in autism. MTX2, NEFL and SLC25A27
showed consistently reduced expression in the ACG,
MC and THL of autism patients. We also observed
nominal genetic association of NEFL and SLC25A27
with autism.
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Table 3 FBAT analysis of NEFL in AGRE family samples
Marker Location Allele® Families® Frequency Z-score© P value®
152979704 Exon 4 UTR T 356 0.844 2.066 0.038
@ 0.156 —2.066
rs3761 Exon 4 UTR G 291 0.894 —1.655 0.097
A 0.106 1.655
152979687 5 C 583 0.654 0.859 0.390
T 0.346 -0.859
P value after multimarker testing 0.083

Major allele is listed first; "Number of informative families used by FBAT; “Positive score indicates the risk allele, negative score indicates the protective allele;
4P <0.05, additive model, significant P values are indicated in bold italic; UTR, Untranslated region.

Gene expression was analyzed in three brain regions:
ACG, MC and THL. ACG has been found to be involved
in emotion formation and processing, learning and
memory [27,28]; MC in planning, control and execution
of voluntary motor functions [29]; and THL in the pro-
cessing and relaying of sensory information [30]. In aut-
istic individuals, abnormalities of anterior cingulate have
been found to be linked with impairments in cognitive
control [31], social orientation [32], social target detec-
tion [33], and response monitoring [34]. Increased white
matter volume of MC has been reported to be associated
with motor impairments in autistic children [35].
Impairments in auditory, tactile, and visual sensory stim-
uli processing, found in autistic individuals, have been
attributed to THL abnormalities [36]. Reduced thalamic
volume has also been observed in autism [37].

Brain samples from the cerebellum and cortices had
been used in previous studies of MtD in autism. The

brain regions (ACG, MC and THL) used in our study
have not been reported elsewhere. The differences in the
results of our study and other whole genome transcrip-
tomic analyses of autism brain [17,38,39] might be due
to the differences in the regions of brain that were ana-
lyzed. The differences in metabolic demands or brain
region-specific pathophysiology could affect the expres-
sion of mitochondrial genes. The etiological heterogen-
eity and criteria for sample selection might also have
influenced the results since MtD is observed in only a
subset of autistic individuals.

NEFL, SLC25A27 and MTX2 showed reduced expres-
sion in all the three brain regions of autism patients.
NEFL is located in 8p21.2, which has been suggested as
a susceptible region for autism in a genome-wide associ-
ation study [40]. Moreover, 8p is known as a potential
hub for developmental neuropsychiatric disorders [41].
Being a major constituent of neurofilaments, NEFL plays

>
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the association study of AGRE samples. Exons are indicated by boxes, with translated regions in closed boxes and untranslated regions in open
boxes. (B) LD structure of NEFL in Caucasian samples, based on D’ values. Tag single nucleotide polymorphisms (SNPs) are encircled.
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Table 4 FBAT analysis of SLC25A27 in Japanese family samples

b d

Marker Location Allele® Families Frequency Z-score© P value

rs12192544 5' C 68 0.888 0.000 1.000
G 0.112 0.000

rs9381469 Intron 3 G 138 0532 0.147 0.883
A 0468 -0.147

rs6901132 Intron 4 A 132 0573 0.899 0.368
G 0427 -0.899

rs6901178 Intron 4 G 61 0.896 —-1.990 0.046
A 0.104 1.990

rs2270450 Exon 9 UTR C 109 0.771 0.877 0.380
T 0.229 -0.877

P value after multimarker testing 0.073

®Major allele is listed first; PNumber of informative families used by FBAT; “Positive score indicates the risk allele, negative score indicates the protective allele;
4P <0.05, additive model, significant P values are indicated in bold italics; UTR, Untranslated region.

a pivotal function in the assembly and maintenance of
axonal cytoskeleton [42]. Knocking out of Nefl has been
found to reduce axonal caliber and conduction velocity
in mice [43]. Sensorimotor impairments and reversal
learning deficits have been observed in Nefl transgenic
mice [44]. NEFL has also been found to have a vital role
in regulating mitochondrial morphology, fusion, and
motility in neurons [45,46]. Reduced NEFL expression
may thus restrict mitochondrial translocation to areas of
the cell requiring energy. We observed a nominal associ-
ation of an NEFL SNP with autism in the AGRE sam-
ples. However, this SNP is located in the UTR of exon 4
and might not have a functional significance.

SLC25A27, also known as uncoupling protein 4
(UCP4), belongs to the large family of mitochondrial
anion carrier proteins that are located on the inner
mitochondrial membrane. It is expressed predominantly
in the central nervous system (CNS) [47]. It has also
been suggested to have roles in the reduction of reactive
oxygen species [48], neuroprotection against OS and
ATP deficiency [49], inhibition of apoptosis [50], neur-
onal cell differentiation [51], mitochondrial biogenesis
[52], and mitochondrial calcium homeostasis [53].
Downregulation of SLC25A27 could thus have detrimen-
tal effects on these processes. Pharmacological targeting
of neuronal uncoupling proteins (UCPs) represents an
important avenue to combat MtD. Fatty acids have been
reported to activate UCPs [54,55]. Consequently, a keto-
genic diet has been found to increase the protein levels
and activities of UCPs, including that of SLC25A27 [56].
We observed a nominal association of SLC25A27 with
autism in Japanese samples. However, rs6901178, the
SNP that showed association, is located in intron 4 and
might not have a functional significance.

MTX2, located on the cytosolic face of the outer mito-
chondrial membrane, has been suggested to function as
an import receptor for mitochondrial preproteins, a

crucial process for cell survival [57,58]. It also plays a
major role in the regulation of apoptosis [59]. In this
study, we observed a downregulation of MTX2 in the
ACG, MC and THL of autism patients; however, we did
not observe an association of this gene with autism.

We also observed, in autism brains, region-specific
alterations in the expression of several other mitochondria-
related genes (Table 2). These genes fall into the ten
functional groups as described in Additional file 3 and
presented below:

1) Membrane polarization and potential (MPP): MPP
plays a crucial role in energy production,
maintenance of calcium homeostasis, protein
import and cell survival [60,61]. We observed, in
the ACG of autism patients, an elevated expression
of BCL2 and TP53, which are involved in the
maintenance of MPP.

2) Mitochondrial transport: In brain, the proper
localization of mitochondria in the neurons is
necessary for the generation of synaptic and action
potentials, regulation of intracellular calcium
dynamics and ATP synthesis [62,63]. In various
regions of autism brains, we observed alterations in
the expression of several genes related to
mitochondrial transport, such as, AIP, BCL2,
DNAJCI19, HSP90AA1, MFN2, MIPEP, TP53 and
TSPO. The expression of DNAJCI9 was
downregulated in the MC and THL of autism
patients.

3) Small molecule transport, SLC25A family: The
expression of several members of SLC25A solute
carrier family was altered, with most of them being
downregulated, in autism. Mitochondrial solute
carriers transport a variety of solutes (di- and
tri-carboxylates, keto acids, amino acids,
nucleotides and coenzymes/cofactors) across the
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4)
5)

6)

8)

9)

inner mitochondrial membrane [64]. We observed a
reduced expression of SLC25A12 and SLC25A14 in
the ACG and MC of autism patients. However,
upregulated expression of SLC25A12 has been
observed in some prior studies [18,19]. The brain
regions used in this study were different from those
in the aforementioned studies. The variation in
metabolic demands of different brain regions could
consequently affect the expression of mitochondrial
genes. There are also conflicting reports about the
association of SLC25A 12 with autism [65-67]. The
expression of SLC25A24 was reduced in the MC
and THL of autism patients.

Targeting proteins to mitochondria.

Mitochondria protein import: Of the hundreds of
proteins that are found within the mitochondria,
the mitochondrial genome encodes only 13, and the
rest must be imported from the cytosol [68]. The
nuclear-encoded, cytoplasmically synthesized
proteins should be precisely targeted and imported
to the mitochondria. In this study, the expression of
several genes involved in protein targeting and
import were found to be altered, with the majority
of them being downregulated, in autism brains.
Among these, DNAJC19 was downregulated in the
MC and THL of autism patients.

Outer membrane translocation.

Inner membrane translocation: The TIMM/TOMM
translocases are involved in the translocation of
nuclear DNA-encoded mitochondrial proteins
across the outer and inner mitochondrial
membranes [69]. Several genes belonging to the
TIMM/TOMM family showed altered expression in
autism brain. TOMM20 showed a reduced
expression in the ACG and MC of autism patients.
Mitochondrial fission and fusion: The expression of
MFEN?2, one of the genes involved in the regulation
of mitochondrial fission and fusion was found to be
downregulated in the ACG of autism patients.
Mitochondrial fission and fusion are crucial in
maintaining the integrity of mitochondria, electrical
and biochemical connectivity, turnover of
mitochondria, segregation and protection of
mtDNA, and programmed cell death [70]. In the
neurons, this is involved in the formation and
function of synapses in the dendritic spines and
axons [71,72].

Mitochondrial localization: We observed reduced
expression of DNM 1L, LRPPRC, MFN2 and
RHOT?2, localized predominantly in the
mitochondria. These genes are involved in the
biogenesis, maintenance of morphology and
integrity, trafficking, and homeostasis of
mitochondria [73-75]. The expression of DNMIL
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and LRPPRC were reduced in the ACG and MC of
autism patients.

10) Apoptosis: The expression of apoptotic genes were
altered, with most of them being upregulated, in
the brain of autism patients. Recent studies have
demonstrated a possible association between neural
cell death and autism [76,77].

A two-way ANOVA showed that the expression of
all the genes that were differentially expressed in two
or more brain regions of autism were dependent on
the disease status rather than being region-specific (data
not shown).

It is not yet clear if MtD is the cause or effect of aut-
ism. ASD patients have often been found to manifest
biochemical or neuropathological traits linked with
altered mitochondrial function. Since mitochondrial ab-
normalities often result in CNS dysfunction, leading to
developmental regression, learning disability, and various
behavioral disturbances, ASD could be an important
clinical presentation of MtD [78]. However, the clinical
features, and the biochemical and genetic abnormalities
in ASD patients with an underlying MtD have been
found to be heterogeneous. In addition, several of the
biochemical abnormalities indicative of MtD may occur
in the absence of any relevant genetic alterations [79].
On the contrary, mitochondrial abnormalities might also
manifest as a secondary to certain pathophysiological
processes involved in autism, such as immune dysregula-
tion, OS and altered calcium homeostasis [79]. Even
though it is possible that a greater proportion of indivi-
duals with ASD might have MtD at the genetic level, it
may not be manifested clinically.

We observed only nominal association of NEFL and
SLC25A27 with autism. Recent studies have indicated
that only a subset of autism may be associated with the
biochemical endophenotype of mitochondrial energy de-
ficiency [80]. Therefore, related genes might not show a
strong association with the disorder. Considering the
highly heterogeneous nature of autism, nominal associa-
tions of genes with subtle effects on the disease pheno-
type should not be ignored. The small sample size of the
Japanese trios is, however, a serious limitation of this
study. MTX2, NEFL and SLC25A27 were selected for
genetic association studies since their expression was
reduced in all of the three brain regions analyzed. Never-
theless, there would have been other important genes
directly impacting mitochondrial functions, albeit differ-
ential expression in just one or two brain regions of aut-
ism patients. However, a detailed study involving several
genes was not possible due to financial constraints.

Factors inherent in postmortem brain studies, and be-
yond the investigator’s control, might have influenced
our results. We did not have sufficient data regarding
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brain pH. However, large-scale gene analysis have shown
that brain pH or PMI has no significant correlation with
RNA integrity [81,82]. The pH could be lower in the
postmortem brains of individuals who suffered pro-
longed agonal states, such as in respiratory arrest, multi-
organ failure and coma [83]. However, the cause of
death was sudden for most of the subjects included in
our study. So, we assume that brain pH might not have
affected the gene expression. The other concern is the
effect of medication; antidepressants, antipsychotics and
selective serotonin re-uptake inhibitors are known to in-
hibit mitochondrial activities [84,85]. In this study, medi-
cation status was available for only three autism patients,
two of whom had received more than two classes of drugs
(drug doses unknown). Therefore, it was difficult to exam-
ine the effects of medication on gene expression. Another
matter of concern is that the cause of death for a majority
of the autism patients was seizure or drowning, where the
latter could also have been due to seizures. Seizure activity
has been known to impair mitochondrial energy produc-
tion by altering the activity of mitochondrial enzymes
involved in ATP production [86,87]. In this study, we have
not examined the expression of any genes directly
involved in mitochondrial energy production. Therefore,
we assume that the cause of death might not have influ-
enced our results. Moreover, it is not yet clear if MtD is
the cause or effect of seizures.

Conclusions

Our study, though preliminary, brings to light some new
genes associated with MtD in autism. Dysfunction of these
genes could lead to defects in mitochondrial activities, in-
cluding energy metabolism, thus augmenting and dissem-
inating several brain abnormalities related to autism.
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