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Abstract 

Background Genomic conditions can be associated with developmental delay, intellectual disability, autism spec‑
trum disorder, and physical and mental health symptoms. They are individually rare and highly variable in presen‑
tation, which limits the use of standard clinical guidelines for diagnosis and treatment. A simple screening tool to 
identify young people with genomic conditions associated with neurodevelopmental disorders (ND‑GCs) who could 
benefit from further support would be of considerable value. We used machine learning approaches to address this 
question.

Method A total of 493 individuals were included: 389 with a ND‑GC, mean age = 9.01, 66% male) and 104 siblings 
without known genomic conditions (controls, mean age = 10.23, 53% male). Primary carers completed assessments of 
behavioural, neurodevelopmental and psychiatric symptoms and physical health and development. Machine learning 
techniques (penalised logistic regression, random forests, support vector machines and artificial neural networks) 
were used to develop classifiers of ND‑GC status and identified limited sets of variables that gave the best classifica‑
tion performance. Exploratory graph analysis was used to understand associations within the final variable set.

Results All machine learning methods identified variable sets giving high classification accuracy (AUROC between 
0.883 and 0.915). We identified a subset of 30 variables best discriminating between individuals with ND‑GCs and 
controls which formed 5 dimensions: conduct, separation anxiety, situational anxiety, communication and motor 
development.

Limitations This study used cross‑sectional data from a cohort study which was imbalanced with respect to ND‑GC 
status. Our model requires validation in independent datasets and with longitudinal follow‑up data for validation 
before clinical application.

Conclusions In this study, we developed models that identified a compact set of psychiatric and physical health 
measures that differentiate individuals with a ND‑GC from controls and highlight higher‑order structure within these 
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measures. This work is a step towards developing a screening instrument to identify young people with ND‑GCs who 
might benefit from further specialist assessment.

Keywords Intellectual disability, Genetic syndromes, Machine learning, Behavioural phenotypes

Background
Up to 20% of individuals with a neurodevelopmen-
tal disorder have an identifiable genomic condition 
[1–4]. Such conditions include copy number variants, 
single nucleotide variants and aneuploidies, which we 
collectively call neurodevelopmental genomic condi-
tions (ND-GCs). ND-GCs have been associated with 
schizophrenia [5], attention deficit hyperactivity disor-
der (ADHD), autism spectrum disorder (ASD) [6], and 
intellectual disability (ID) [7].

The clinical presentation of ND-GCs is variable and 
complex. For example, children with 22q11.2 deletion 
syndrome, a disorder caused by a deletion in the q11 
region of chromosome 22, have a high risk of devel-
opmental delay and intellectual disability [8], seizures 
(57%) [9], motor coordination problems (81%) [10], 
sleep disturbances (60%) [11] and psychiatric disor-
ders [12]. Such complex presentation is not unique to 
22q11.2 deletion but is typical for many ND-GCs [13], 
as is incomplete and variable penetrance [14, 15].

It is therefore extremely important for families of a 
child with an ND-GC to be informed about the impact 
that the variant may have on their child’s development, 
so that they can obtain the best possible support. Addi-
tionally, clinicians, such as psychiatrists in child and 
adolescent mental health, or community learning dis-
ability services, who care for affected children after 
they have received a genetic diagnosis are challenged 
by complex presentations where symptoms which may 
require input from multiple clinical specialities are 
present.

This problem can be exacerbated by variability in the 
conditions that present in children with a ND-GCs, 
which may not follow the expected symptom patterns 
based on research from non-genotyped populations. 
For example, we have observed that children with 
22q11.2 deletion and ADHD are much more likely to be 
affected with an inattentive subtype than the children 
with idiopathic ADHD [16]. A clinician who is unaware 
of this may be less likely to diagnose ADHD, meaning 
that the child misses beneficial treatment. Diagnostic 
overshadowing may also take place, a well-recognised 
phenomenon where difficulties that are experienced 
by a child with a genomic disorder are interpreted as 
wholly due to ID [17–19]. This can reduce the chance 
for referral to appropriate services and access to appro-
priate treatment [20, 21].

One solution to these problems would be to identify 
patterns of neurodevelopmental and physical health 
symptoms that are most associated with ND-GCs, to 
develop a screening tool to stratify affected patients for 
graded approaches to investigation and treatment. Such 
a tool would need to be quick and simple to use either by 
a primary carer before consultations, or as part of a con-
sultation, in a busy clinical setting, and focus on the most 
salient symptoms that could indicate future difficulties.

In the present study, we used a relatively large sample 
combining young people with a range of ND-GCs and 
siblings with no ND-GC (controls) in all of whom deep 
physical and mental health phenotyping had been con-
ducted. We identify those symptoms that most robustly 
differentiate between young people with ND-GCs and 
controls and subsequently analysed whether these symp-
toms form broader symptom domains.

Method
Participants
We defined ND-GCs as conditions associated with 
increased risk of neurodevelopmental symptoms [22] 
and caused by a genetic variant which was either patho-
genic or likely pathogenic, according to American Col-
lege of Medical Genetics and Genomics guidance [23]. 
We aimed to recruit a population of participants with a 
range of ND-GCs that represented a “snapshot” of pres-
entations to UK Child and Adolescent Mental Health 
Services, Intellectual Disability, Clinical Genetics or 
Community Paediatrics clinics.

Families of children with a confirmed ND-GC, aged 
over 4 years, were recruited through UK Medical Genet-
ics clinics, word of mouth and the charities UNIQUE 
(https:// rarec hromo. org) and Max Appeal (https:// www. 
maxap peal. org. uk), as part of ongoing cohort studies at 
Cardiff University including the ECHO study (https:// 
www. cardi ff. ac. uk/ cy/ centre- neuro psych iatric- genet ics- 
genom ics/ resea rch/ themes/ devel opmen tal- psych iatry/ 
copy- number- varia nt- resea rch- group) and the IMAG-
INE study (https:// imagi ne- id. org) [22, 24]. Detailed 
information regarding the cohort inclusion criteria is 
available in the IMAGINE study protocol https:// imagi 
ne- id. org/ healt hcare- profe ssion als/ study- docum ents- 
downl oads- page/.

Siblings closest in age to individuals with a ND-GC, 
who did not have a known ND-GC themselves, were 
recruited to the study as controls; siblings were not 
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https://imagine-id.org/healthcare-professionals/study-documents-downloads-page/
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excluded if they had any neurodevelopmental or physical 
health-related conditions.

In total, 589 individuals (441 individuals with a ND-GC 
and 148 siblings) were included in the study, from whom 
data from 493 individuals were included in our machine 
learning analysis after initial data preparation (Additional 
file 1: Methods). Participant demographic characteristics 
are shown in Table 1. Our sample size was the maximum 
number of participants in our dataset who had all the 
required variables.

Informed, written consent was obtained prior to 
recruitment from the carers of participants and recruit-
ment was carried out in agreement with protocols 
approved by relevant NHS and university research ethics 
committees. Individual ND-GC genotypes were estab-
lished from medical records and in-house genotyping 
at the Cardiff University Centre for Neuropsychiatric 
Genetics and Genomics using microarray analysis. The 
ND-GCs of participants are shown in Table 2.

Assessments
Primary carers of participants completed a battery of 
assessments to collect comprehensive information on 
physical and mental health problems through semi-
structured interviews with trained research staff and 

questionnaires. Assessments were carried out between 
January 2011 and December 2019.

Our goal was to generate a set of discriminating items 
that could be quickly, easily and conveniently completed 
by a carer or community clinician either on paper or 
online, and which could serve as the basis for the devel-
opment of an instrument screening for the most likely 
domains in which young people with ND-GCs can expe-
rience difficulties. Therefore, measures which involved 
complex or prolonged assessments, such as IQ or motor 
co-ordination, or potentially intrusive testing, such as 
blood tests, although important for a full and in-depth 
assessment of phenotype in some settings, were not 
included in the current analysis.

Psychiatric symptoms were measured using the Child 
and Adolescent Psychiatric Assessment (CAPA, [25]), 
Strengths and Difficulties Questionnaire (SDQ, [26]) 
and the Social Communication Questionnaire (SCQ, 
[27]). The CAPA assesses a broad set of psychopatho-
logical domains including ADHD, anxiety disorders, 
oppositional defiant disorder, obsessive compulsive 
disorder, psychosis and psychotic experiences, tic dis-
orders, mood disorders, and substance abuse. The SDQ 
is a dimensional measure of psychopathology that 
includes measures of hyperactivity, emotional prob-
lems, peer problems, and prosocial behaviour. The SCQ 

Table 1 Demographic information about the sample of children affected by a ND‑GC and sibling controls

a Median (IQR); n (%)

Variable Group

Overall, N =  493a ND-GC, N =  389a Sibling, N =  104a

Age 9.26 (7.27, 12.21) 9.01 (7.16, 11.82) 10.23 (8.12, 13.00)

Gender

 Female 182 (37%) 133 (34%) 49 (47%)

 Male 311 (63%) 256 (66%) 55 (53%)

Highest educational level

 No school leaving exams 32 (6.5%) 29 (7.5%) 3 (2.9%)

 Low 104 (21%) 86 (22%) 18 (17%)

 Middle 175 (35%) 140 (36%) 35 (34%)

 High 129 (26%) 105 (27%) 24 (23%)

 Unknown 53 (11%) 29 (7.5%) 24 (23%)

Income

 ≤ £19,999 123 (25%) 105 (27%) 18 (17%)

 £20,000–£39,999 166 (34%) 134 (34%) 32 (31%)

 £40,000–£59,999 74 (15%) 62 (16%) 12 (12%)

 £60,000+ 71 (14%) 52 (13%) 19 (18%)

 Unknown 59 (12%) 36 (9.3%) 23 (22%)

Ethnicity

 European 439 (89%) 356 (92%) 83 (80%)

 Other 31 (6.3%) 26 (6.7%) 5 (4.8%)

 Unknown 23 (4.7%) 7 (1.8%) 16 (15%)
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measures ASD-associated symptoms and was used as 
the CAPA and SDQ lack of coverage of ASD symptoms.

Difficulties with coordinated movement are also an 
important symptom in individuals with ND-GCs [10, 
24, 28, 29]; therefore, we assessed motor coordination 
using the developmental coordination questionnaire 
(DCDQ, [30]).

Information about physical health problems and 
development was collected through a detailed ques-
tionnaire covering developmental history including 
pregnancy and birth and health problems in all major 
organ systems. A full list of all gathered variables is 
available on the IMAGINE ID study website https:// 
imagi ne- id. org/ wp- conte nt/ uploa ds/ 2019/ 04/ Online- 
Data- dicti onary- 16. 04. 19- v2. pdf.

Included items were selected to cover a wide set of 
domains, including neurodevelopmental disorders, 
psychopathology more broadly, general health and 
development, motor development, social and commu-
nication skills and areas of strength and prosocial skills.

After variable filtering for excessive similar responses 
and missing data, all but one variable (birth weight in 

kg) was either binary or ordinal. We therefore did not 
perform any transformation on our variables.

Statistical analysis and data availability
All statistical analyses were carried out in R version 4.2.1 
[31]. An overview of the analysis workflow is presented in 
Fig. 1. Code used in the project is provided in a GitHub 
repository: https:// github. com/ NADon nelly/ nd_ cnv_ ml 
and fitted models are presented as an interactive Shiny 
app: https:// nadon nelly. shiny apps. io/ cnv_ ml_ app/. Data 
from the IMAGINE study are available via the IMAGINE 
ID study website: https:// imagi ne- id. org/ healt hcare- profe 
ssion als/ datas haring/. Analysis is reported in line with 
the TRIPOD guidelines, Additional file 1: Table S1 [32]. 
An early version of this manuscript was deposited as a 
preprint: https:// doi. org/ 10. 1101/ 2022. 12. 16. 22283 581.

Dimensional structure assessment
We applied principal components analysis (PCA) fol-
lowed by partial least squares discriminant analysis 
(PLSDA, where the outcome was ND-GC status) to 
explore the dimensional structure of our dataset, using 
the mixOmics package [33]. A cross-validation process 
was used find the optimal number of components and 
variables for the PLSDA (Additional file 1: Methods).

Machine learning model fitting
We prepared our data for machine learning (ML) model 
fitting by splitting participants into a training dataset of 
393 (80% of the dataset) and a test set of 100 (20% of the 
dataset), stratifying by ND-GC status, sex and age (cat-
egorised into quintiles). The distribution of demographic 
characteristics in the test and training sets was reason-
ably balanced (Additional file 1: Table S2).

Our outcome was binary classification of ND-GC sta-
tus (with ND-GC vs control), and we evaluated model 
performance using the area under the receiver operator 
characteristic curve (AUROC) and Brier Score (mean 
squared error between predicted probability and true 
ND-GC status, where controls were scored as 0 and indi-
viduals with an ND-GC as 1).

We used penalised logistic (elastic net) regression 
(using the glmnet package [34]), random forests (using 
the Ranger package [35]), radial basis function support 
vector machines (SVMs, using the kernlab package [36]) 
and single layer artificial neural networks (using the nnet 
package [37]) to create models capable of capturing lin-
ear and nonlinear relationships.

Models were fit using nested cross-validation (CV), 
with 20 outer folds and 20 inner folds. Outer folds were 
generated by splitting the data into 5 folds, repeated 4 
times. Inner folds were generated from the outer fold 
analysis set using bootstrapping with replacement.

Table 2 Counts of the genotypes of all study participants

a To preserve the confidentiality of individuals who had ND-GCs with a total 
count of < 5 participants with the same ND-GC in the study, we have grouped 
all such low frequency ND-GCs into a single group. This group contained 
32 deletions and 25 duplications, with 15 other conditions being related to 
mixed deletions and duplications, single nucleotide variants, triplications, 
translocation, chromosomal trisomy, or imprinting. Chromosomal regions 
affected by ND-GCs in this group were: 1p21, 1p33, 1p36, 1q21, 1q42, 1q44, 
2p12, 2p16, 2q11-q21, 2q13, 2q33, 2q34, 2q37, 3q28-29, 4p15, 4q28-31, 
5p15, 5q23, 6p25, 6q27, 7p22, 7q11, 8q21, 8q24, 9p24, 9q34, 11q23, 12p13, 
15pter-q13, 15q11, 15q11-q13, 15q13, 16p11, 16p12, 16p13, 16p21, 16q23, 
17p11, 17p13, 17q12, 17q23, 17q25, 18p11, 20q13, 22q11, 22q12-q13, 22q13, 
Xp21, Xp22, Xp28

Genomic condition N

Controls 104

Othera 81

16p11.2 deletion 45

15q11.2 deletion 39

22q11.2 deletion 30

1q21.1 duplication 28

16p11.2 duplication 25

15q13.3 deletion 24

22q11.2 duplication 23

15q13.3 duplication 20

1q21.1 deletion 18

NRXN1 16

TAR duplication 13

16p11.2 distal deletion 11

Kleefstra 11

15q11.2 duplication 5

https://imagine-id.org/wp-content/uploads/2019/04/Online-Data-dictionary-16.04.19-v2.pdf
https://imagine-id.org/wp-content/uploads/2019/04/Online-Data-dictionary-16.04.19-v2.pdf
https://imagine-id.org/wp-content/uploads/2019/04/Online-Data-dictionary-16.04.19-v2.pdf
https://github.com/NADonnelly/nd_cnv_ml
https://nadonnelly.shinyapps.io/cnv_ml_app/
https://imagine-id.org/healthcare-professionals/datasharing/
https://imagine-id.org/healthcare-professionals/datasharing/
https://doi.org/10.1101/2022.12.16.22283581
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Fig. 1 Flowchart of analysis workflow including variable and participant selection and machine learning model fitting. CV: cross‑validation; ML: 
machine learning; PCA: principal components analysis; PLSDA: partial least squares discriminant analysis
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Within each outer fold missing data were imputed 
using bagged tree models [38], and the same model was 
used to impute missing data in the analysis set.

Grid search (30 elements) was used to optimise hyper-
parameters for ML models across inner folds. Model 
performance was evaluated by fitting the model with the 
best performing set of hyperparameters in the inner fold 
data to the (previously unseen) outer fold assessment 
dataset. This process was then repeated for all outer folds 
(Additional file 1: Methods).

As an additional analysis, as our dataset was imbal-
anced with regard to ND-GC status, we also trained and 
evaluated machine learning models after either down-
sampling the number of individuals with ND-GCs to be 
equal in number of controls; or upsampling control indi-
viduals to be equal in number to those with ND-GCs, 
using random resampling with replacement.

Following nested CV, we selected models with the 
highest AUROC, and evaluated the importance of all 
included variables for model prediction using permuta-
tion testing [39]. We selected the top 30 variables for all 
ML models and generated two further variable sets: all 
variables which were included in the top 30 most impor-
tant for more than one ML model, and those variables 
included in the top 30 for at least 3 models, to give a total 
of 6 sets of variables.

We extracted 30 variables for each model because we 
wanted to achieve a balance between accurate predic-
tion, including a wide set of variables for exploration of 
dimensional structure and limiting the number of items 
to that which could be realistically completed by young 
people’s carers and/or clinicians as a brief screening tool 
to be used in a clinical setting.

We repeated our nested CV process using the same ML 
models using the 6 sets of most-predictive variables, giv-
ing a total of 24 combinations of models and predictor 
variables, selecting the best performing combinations of 
variables and ML model, based on AUROC.

We evaluated the performance of the final models 
using the held-out training data. Missing data in the test 
dataset was imputed using a model fit to the full training 
dataset, and the ND-GC status of each participant in the 
test dataset was predicted using the best ML models.

Model performance was evaluated by drawing 2000 
bootstrap samples from the test dataset and estimating 
performance (AUROC and Brier Score) for the boot-
strap sample. This produced a distribution of values from 
which a median value and a 95% confidence interval were 
calculated.

Model calibration, i.e. the relationship between true 
and model-predicted probability of ND-GC status, was 
estimated by binning model predictions by predicted 
probability of ND-GC status and plotting this against 

true ND-GC status. Model performance was also esti-
mated for male and female participants separately, and 
after binning participants by age quintile.

The importance of each variable in the best fit-
ting model was evaluated using a permutation-based 
approach, as above.

The optimal threshold for converting model predicted 
probability of ND-GC status into a binary classification 
was estimated by finding the threshold which maximised 
the j-index (sensitivity + specificity – 1, [40]).

Exploratory graph analysis
Bootstrap exploratory graph analysis (EGA) was used 
to investigate the dimensional structure of the best per-
forming variable set. EGA has been shown to be as 
accurate or more accurate than traditional factor ana-
lytic methods such as parallel analysis [41]. Bootstrap 
EGA estimates and evaluates dimensional structure in 
a set of variables by first applying a network estimation 
method (EBICglasso as applied using the qgraph package 
[42]), followed by a community detection algorithm for 
weighted networks (Walktrap community detection algo-
rithm [43]). Nonparametric bootstrapping is then used 
to generate bootstrap samples (n = 9999) from the input 
dataset, and EGA was applied to each replicate sample 
to form a sampling distribution from which the median 
value of each edge across the replicate networks, result-
ing in a single network. The stability of the network can 
be assessed by measuring the proportion of bootstrapped 
networks where a given variable is included in each puta-
tive dimension [44], and the number of variables included 
can be adjusted to improve the stability of dimension rep-
resentations. We therefore fit an EGA model to a full set 
of variables, then repeated the analysis with the variables 
with the most consistent relationship to our dimensions 
(item stability > 0.75; this left 19 variables), generating a 
stable and consistent EGA model.

To provide an additional assessment of the fit of the 
proposed dimensional structure to the data, confirma-
tory factor analysis was carried out on the typical dimen-
sion structure identified by bootstrap EGA, with fit 
assessed using the comparative fit index (CFI) and root 
mean square error of approximation (RMSEA).

Finally, we repeated the above model fitting process-
ing using the most important variables in each of the five 
dimensions identified by EGA.

Results
Study participant characteristics
A total of 493 participants contributed to our dataset, 
including 389 young people with a ND-GC and 104 con-
trols. Demographic characteristics of study participants 
are given in Table 1 and genotypes in Table 2. Individuals 
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with an ND-GC were approximately a year younger than 
controls and there was a higher proportion of males in 
the ND-GC group. Compared to families where both 
a control and a young person with a ND-GC took part, 
families where only a young person with a ND-GC took 
part had lower parental educational level and income, 
and there were fewer participants of European ancestry; 
the discrepancy between individuals with ND-GCs and 
control individuals was due to most young people with a 
ND-GC not having a sibling included in the study (58%).

Partial least squares analysis
We applied principal components analysis (PCA) and 
partial least squares discriminant analysis (PLSDA) to 
our full set of 176 variables for the 389 participants in our 
training dataset to describe the dimensional structure of 
our variables. PLSDA is a supervised dimension reduc-
tion method which focusses on discrimination between 
groups. We found that 2 components provided optimal 
discrimination between groups, with 50 and 40 variables 
selected for the two components, respectively. This anal-
ysis indicated the two components explained 14.8% and 
5.4% of the variance in our dataset (Additional file 1: Fig. 
S1). This analysis indicated that it was possible to iden-
tify young people with ND-GCs using our dataset; young 
people with ND-GCs had lower scores on component 
1. Some individuals with a ND-GC showed similar pro-
files to controls and likely represent participants with a 
ND-GC that are relatively mildly affected; some controls 
showed profiles more like those with ND-GCs, reflecting 
individuals in the control sample with elevated difficul-
ties across the measured domains.

However, this analysis still selected large numbers 
of variables. We therefore applied machine learning 
approaches to develop classification models that identi-
fied an optimally predictive subset of variables.

Developing machine learning models
We developed machine learning models (artificial neu-
ral networks [ANN], radial basis function support vector 
machines [SVM], penalised logistic regression [LR] and 
random forests [RF]) to classify individuals by ND-GC 
status, using our full training set of 176 variables and 393 
participants using nested cross-validation (CV). After 
nested CV, all models performed well at distinguish-
ing between individuals in the training data set with a 
ND-GC and controls, with median AUROCs ≥ 0.9 in all 
cases (Additional file  1: Table  S3). The RBF SVM per-
formed best, with an overall median AUROC of 0.934 
95% credible interval [0.914, 0.953]. The random forest 
and penalised logistic regression models did not perform 
significantly worse than the SVM, but the performance of 

the ANN was poorer (AUROC difference = − 0.02, 95% 
credible interval of difference [− 0.031, − 0.009]).

Predictive performance with optimised variable sets
We repeated model fitting using nested cross-validation 
using the sets of variables selected as being most impor-
tant to the models fit to the full set of variables (deter-
mined using permutation testing). Results were similar 
across multiple models and variable sets (median training 
performance ranged from 0.914 to 0.961, Fig. 2A, Addi-
tional file 1: Table S4). We selected the “RF” variable set 
for further analysis as this set appeared to produce both 
the best classification performance across multiple model 
types.

We assessed whether model performance was altered 
by up- or down-sampling our training datasets such that 
the training data was balanced for status ND-GC. This 
analysis indicated that there were only minor changes in 
performance after up or downsampling (Additional file 1: 
Table  S5). We therefore carried out all further analyses 
with the original training dataset.

We then fit the best performing models to our held-out 
test set of data from 100 participants (Fig. 2B, Table 3). 
The best performing model was a RF, achieving an 
AUROC of 0.915 (95% bootstrapped CI [0.838, 0.980]) 
with a Brier Score of 0.188 (95% bootstrapped CI [0.121, 
0.243]).

Performance of other models was not significantly 
poorer than the RF. The optimal probability for classify-
ing a participant as having an ND-GC, the point at which 
the j-index is maximised, was 0.835 (Fig.  2C). Using 
this point as the cut off for classification, the RF model 
correctly classified 65/72 young people with ND-GCs 
(90.3%) and 24/28 controls (85.7%).

We investigated whether classification performance 
varied over participant age or between genders. Perfor-
mance of the final RF model appeared to be higher in 
male than female participants, but there did not appear 
to be consistent differences in performance across par-
ticipant ages, although our sample was mostly of younger 
participants (Additional file 1: Table S6).

Analysis of model calibration demonstrated miscalibra-
tion between predicted and actual probabilities, with the 
model having some tendency to given lower-than-opti-
mal predicted probabilities of ND-GC status (Fig. 2D).

We investigated variable importance in our best per-
forming model (Fig. 2E). This demonstrated that a subset 
of variables appeared to have a particularly large impor-
tance to the model. We next investigated whether there 
was a dimensional structure within our variable set that 
could be used to understand the predictors of ND-GC 
status.
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Fig. 2 Performance of final models on test data. A Plot of performance (AUROC) of four ML models (ANN = artificial neural network, penalised 
LR = penalised logistic regression, random forest, RBF SVM = radial basis function support vector machine) fit to 7 variable sets (all variables = all 
176 variables; ANN = 30 most important variables in an ANN fit to all variables; penalized LR = 30 most important variables in a penalized logistic 
regression fit to all variables; random forest = 30 most important variables in a random forest model fit to all variables; > 1 Model = variables 
identified as being in the 30 most important variables by more than one ML model; > 2 Models = variables identified as being in the 30 most 
important variables by more than two ML models; SVM = the 30 most important variables in a Radial Basis Function SVM fit to all variables. Points 
show the median posterior AUROC, error bars show the 95% credible interval of the AUROC. B Receiver‑operator characteristic curves for the 4 
machine learning models, using the 30 variables from the random forest dataset. C Top—histogram of predicted probability of ND‑GC status 
in the 100 participants in our testing dataset using the best performing random forest model; bottom—plots of sensitivity, specificity of model 
classification performance at different thresholds for categorising a predicted probability. D Calibration plot for the best performing RF model. 
Points are performance in each decile, vertical lines show 95% confidence intervals, thick diagonal line shows a linear model fit to the data, with 
the shade area showing the 95% confidence interval of the linear model. A perfectly performing model would follow the diagonal dashed line. E 
Variable importance for the best fitting model. Mean dropout loss is the mean change in model AUROC after a given variable is permuted (repeated 
500 times). Horizontal line indicates (1—AUROC) of the full model; therefore, variables with mean values above this line have a negative impact on 
model fit when permuted. Variable definitions are provided in Additional file 1: Table S7
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Underlying dimensional structure of selected variables
We next investigated an underlying structure of the 
variables included using an exploratory graph analysis 
(EGA). The 30 variables used were the optimised variable 
set of the best performing RF model, determined using 
permutation testing. These variables included items 
from the Developmental Coordination Disorder Ques-
tionnaire, Social Communication Questionnaire, Social 
Communication Questionnaire, Child and Adolescent 
Psychiatric Assessment and the Health and Development 
Questionnaire.

EGA fit to the most stable set of variables (19 variables 
were included in the final EGA model) revealed that the 
variables formed a structure consisting of 5 dimensions: 
1: conduct; 2: separation anxiety; 3: situational anxiety 
and insomnia, 4: communication; and 5: co-ordination 
(Fig. 3, Additional file 1: Table S7).

Confirmatory factor analysis based on this four-dimen-
sion structure demonstrated that the 4-factor structure 

fit with RMSEA of 0.046 and CFI of 0.980, indicating sat-
isfactory fit to the data.

Finally, we investigated if the variable domains identi-
fied through EGA could be used to develop a further 
reduced set of variables for use in a ML model; although 
a 30-item scale could be realistically used in a clinical 
setting, a shorter screener could be useful in busy clini-
cal environments. We therefore selected the variable in 
each dimension with the highest variable importance and 
fit ML models to our training data, using these variables 
(AGO [agoraphobia intensity], ANT [anticipatory dis-
tress intensity], BLT [blurting out answers to questions], 
SP2 [talking by age 2], CGM [participating in sports or 
games]).

The best performing model was a penalised logistic 
regression model with AUROC = 0.859 (bootstrapped 
95% CI [0761, 0.955]) and Brier Score = 0.247 [0.203, 
0.292]. Sensitivity and specificity were maximised at 
a threshold of 0.763; with 64/72 participants with an 

Table 3 Final model performance on held‑out test dataset

Values shown are bootstrapped performance and the 95% confidence interval of the measure (AUROC and Brier Score), and difference in AUROC between the random 
forest and other ML models, with its 95% confidence interval, and the probability of direction for the AUROC difference

Model Brier score AUC ROC AUC ROC difference Probability 
of direction

Random forest 0.188 [0.121, 0.243] 0.915 [0.838, 0.98] – –

Penalised LR 0.183 [0.121, 0.251] 0.904 [0.82, 0.981] 0.011 [− 0.099, 0.122] 0.843

ANN 0.186 [0.152, 0.225] 0.883 [0.787, 0.963] 0.031 [− 0.087, 0.151] 0.619

RBF SVM 0.21 [0.137, 0.284] 0.897 [0.814, 0.968] 0.018 [− 0.089, 0.124] 0.757

Fig. 3 Exploratory graph analysis. The graph shows correlations between variables (notes) as lines, where line thickness represents correlation 
strength (range 0–1). Nodes are coloured by the putative dimensions they are assigned to by the bootstrapped EGA algorithm. Variable definitions 
are given in Additional file 1: Table S7.
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ND-GC being correctly classified (88.9%), and 19/28 con-
trol participants classified correctly (67.9%). This perfor-
mance was lower than the full 30 variable model, but still 
indicative of reasonable classification performance.

Discussion
Main findings
In this study, we demonstrate the potential of using 
machine learning to identify key variables where individ-
uals with genomic conditions associated with intellectual 
disability and neurodevelopmental disorders differ from 
control individuals, based on a limited set of psychiatric, 
behavioural and physical health related variables, in the 
absence of biochemical, genetic or neurocognitive data. 
Using a random forest classifier, we were able to classify 
individuals with an ND-GC with excellent performance, 
achieving an AUROC of 0.915. We identified 5 dimen-
sions in our variable set that appeared to be most rele-
vant to identifying individuals with an ND-GC, namely 
conduct, separation and situational anxiety, communica-
tion and motor co-ordination.

Relationship to previous studies
Previous studies have described the high rates, and com-
plex presentations, of psychiatric and neurodevelop-
mental difficulties in young people with ND-GCs [8, 12, 
22, 24, 45]. ND-GCs are associated with a wide range of 
health outcomes [15], along with multi-morbidity later in 
life [46], and are highly enriched in the population with 
developmental delay/intellectual disability [1, 3, 4, 47]. 
However, not all individuals with a ND-GC will meet 
diagnostic criteria for specific psychiatric disorders [48]. 
We attempted to address this by not including diagnostic 
status in our classification models, only symptom scores; 
the highly accurate classification we were able to achieve 
supports the idea that profiles of symptoms are most 
informative when identifying areas of relative difficulty or 
strength in individuals with ND-GCs.

We identified 5 underlying dimensions in our final set 
of variables. These dimensions identify potential key phe-
notypic areas where individuals with ND-GCs differ from 
controls: anxiety (particularly separation anxiety) and 
insomnia, motor co-ordination, communication skills 
and conduct, as well as suggesting that other domains, 
such as difficulties with hyperactivity, may be less dis-
criminating. The identified dimensions map onto areas of 
difficulty elucidated in previous studies [11, 28, 48–51], 
and highlight that specific symptoms may be particularly 
informative about ND-GC status, including symptoms of 
separation anxiety and difficulties with speech.

Clinical care pathways may be enhanced by focusing 
more on the areas identified as key dimensions by our 
analysis if further research demonstrates that they are 

areas that predict longer term difficulties for children 
with ND-GCs. It will also be important to take the items 
identified and work with parents and clinicians to opti-
mise the wording and content of any items that could 
be used in a screening test derived from our analysis. 
For example, two highly predictive items refer to a his-
tory of speech and language therapy or having an educa-
tion statement of needs from a school. As young people 
with ND-GCs can struggle to access therapies in a timely 
fashion, this item might miss individuals who might have 
needed speech and language therapy, but not been able to 
access it; similarly, there may be delays to accessing sup-
port in schools; therefore, asking about relative difficul-
ties with speech and language may be more informative.

Strength and limitations
This is the largest study of its kind to investigate the 
possibility of identifying domains of differences in pres-
entation in individuals with a broad range of ND-GCs 
based solely on psychiatric and health phenotypes using 
machine learning models. We were able to produce a 
model with high AUROC, which performed well across 
a range of relevant ages, and in both males and females.

However, while including a very broad range of 
genomic disorders provided a more representative sam-
ple of those variants which may be seen by clinical ser-
vices, it may have increased the noise and variability in 
symptom profiles. This requires empirical testing.

Similarly, we included siblings as controls based on 
genetic testing confirming the absence of an ND-GC, 
rather than based on phenotype. Our sample was also 
unbalanced, in that there were a larger number of individ-
uals with a ND-GC than controls, because not all families 
with a child with an ND-GC had an sibling of a similar 
age at recruitment, and our dataset is derived from a 
cohort study that specifically aims to recruit individu-
als with ND-GCs. This can affect model performance, 
as most techniques perform best in balanced samples. 
Although we performed additional sensitivity analysis 
demonstrating that model performance remained similar 
when either upsampling controls or downsampling indi-
viduals with ND-GCs, future studies that include larger 
sets of controls, in both siblings and unrelated typically 
developing individuals, will be important for validating 
our models.

Our initial partial least squares discriminant analysis 
indicated that young people with an ND-GC and con-
trol individuals lie on a spectrum of presentations; while 
it is possible to distinguish between the two groups 
based on psychiatric, behavioural and health informa-
tion, there remain some individuals with a ND-GC who 
have profiles that are very similar to control individuals. 
This highlights the wide variety of phenotypic expression 
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that is seen within individuals with ND-GCs, which will 
impose limits on the performance of any classification 
algorithm.

Additionally, ascertainment bias may affect our results. 
Developmental delay is a major reason for referral for 
genetic testing in the UK, and it is likely that our sam-
ple has a preponderance to include those individuals with 
ND-GCs who are on the more severe end of the pheno-
typic presentation, and as such it may be the case that 
the dimensional structure we identify as being associated 
with ND-GC carriage may be applicable only to relatively 
more severe difficulties, rather than the phenotype of the 
entire population of young people with ND-GCs.

We considered the role of decision curve analysis in 
our study, as this approach has been recommended in 
studies of prediction models [52]. However, such calcu-
lations rely on samples being drawn from a population 
comparable to the clinical population. Our study sample 
was drawn from a cohort explicitly recruited based on a 
positive test for a ND-GC (or sibling controls). Therefore, 
such an analysis is not applicable to our study. However, 
it should be performed in a future study validating our 
model in a broader population.

Our machine learning models and EGA would be 
strengthened by measuring performance and performing 
confirmatory factor analysis using an independent sam-
ple. Future studies which combine measurement of most 
differentiating variables and longer-term follow-up of 
psychiatric and health outcomes would allow the predic-
tive accuracy of our model to be evaluated.

We included only items that were reported by par-
ticipant’s parents or carers, rather than from participant 
self-report, or from other sources of information such as 
teacher report or clinical observation. Although multi-
informant and multi-modal assessment would be the 
gold standard for accurate diagnosis, parental report is 
more likely to be available in many clinics as a starting 
point to identify individuals who require more detailed 
assessment.

The symptom domains identified could be explored in 
future work by, as suggested, the development of self-
reporting tasks, or the use of novel technology such as 
analysis of video recordings using machine learning algo-
rithms (for example given our finding that communica-
tion and motor co-ordination are important domains) or 
ecological momentary assessment methods.

Despite these limitations, it is important to better 
understand the difficulties faced by this group of indi-
viduals as they make up a significant proportion of those 
presenting to intellectual disability services and clini-
cians often lack complete information on prognosis for 
patients with ND-GCs. This study highlights areas of dif-
ficulties for those children who may most need further 

support, which may warrant further research and may be 
targets for individualised interventions.

Conclusions
We develop a set of questionnaire variables associated 
with neurodevelopmental disorders and intellectual dis-
ability symptoms in ND-GCs which could form the basis 
for clinical screening instruments. We highlight that con-
duct, separation and situational anxiety, communication 
and motor skills and conduct are important areas where 
children with ND-GCs differ from control individuals. 
Future research should investigate the prognostic asso-
ciations of difficulties in these domains.
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