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Abstract 

Background Phenotypic studies have identified distinct patterns of autistic characteristics in genetic syndromes 
associated with intellectual disability (ID), leading to diagnostic uncertainty and compromised access to autism-
related support. Previous research has tended to include small samples and diverse measures, which limits the gener-
alisability of findings. In this study, we generated detailed profiles of autistic characteristics in a large sample of > 1500 
individuals with rare genetic syndromes.

Methods Profiles of autistic characteristics based on the Social Communication Questionnaire (SCQ) scores were 
generated for thirteen genetic syndrome groups (Angelman n = 154, Cri du Chat n = 75, Cornelia de Lange n = 199, 
fragile X n = 297, Prader–Willi n = 278, Lowe n = 89, Smith–Magenis n = 54, Down n = 135, Sotos n = 40, Rubinstein–
Taybi n = 102, 1p36 deletion n = 41, tuberous sclerosis complex n = 83 and Phelan–McDermid n = 35 syndromes). It 
was hypothesised that each syndrome group would evidence a degree of specificity in autistic characteristics. To test 
this hypothesis, a classification algorithm via support vector machine (SVM) learning was applied to scores from over 
1500 individuals diagnosed with one of the thirteen genetic syndromes and autistic individuals who did not have a 
known genetic syndrome (ASD; n = 254). Self-help skills were included as an additional predictor.

Results Genetic syndromes were associated with different but overlapping autism-related profiles, indicated by the 
substantial accuracy of the entire, multiclass SVM model (55% correctly classified individuals). Syndrome groups such 
as Angelman, fragile X, Prader–Willi, Rubinstein–Taybi and Cornelia de Lange showed greater phenotypic specificity 
than groups such as Cri du Chat, Lowe, Smith–Magenis, tuberous sclerosis complex, Sotos and Phelan-McDermid. The 
inclusion of the ASD reference group and self-help skills did not change the model accuracy.

Limitations The key limitations of our study include a cross-sectional design, reliance on a screening tool which 
focuses primarily on social communication skills and imbalanced sample size across syndrome groups.

Conclusions These findings replicate and extend previous work, demonstrating syndrome-specific profiles of autistic 
characteristics in people with genetic syndromes compared to autistic individuals without a genetic syndrome. This 
work calls for greater precision of assessment of autistic characteristics in individuals with genetic syndromes associ-
ated with ID.

*Correspondence:
Joanna Moss
j.moss@surrey.ac.uk
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13229-022-00530-5&domain=pdf
http://orcid.org/0000-0002-8109-6483
http://orcid.org/0000-0002-5753-7269
http://orcid.org/0000-0001-8001-0126
http://orcid.org/0000-0003-0701-3392
http://orcid.org/0000-0003-0660-1969
http://orcid.org/0000-0002-1147-7029
http://orcid.org/0000-0001-5217-6209
http://orcid.org/0000-0002-5444-4147
http://orcid.org/0000-0002-8676-3070
http://orcid.org/0000-0002-8884-2020
http://orcid.org/0000-0002-7676-933X


Page 2 of 14Bozhilova et al. Molecular Autism            (2023) 14:3 

Keywords Autism, Genetic syndromes, SVM, Machine learning, Behavioural phenotype

Background
Autism is highly heritable [1] and characterised by a 
range of behavioural difficulties or differences in three 
core domains: social interactions, communication and 
restricted, repetitive behaviours/interests [2, 3]; although 
current diagnostic frameworks group social interaction 
and communication into a single domain [2]. Despite dis-
cretely defined diagnostic categories, there is substantial 
genotypic [4] and phenotypic variability across autistic 
individuals.

To understand this variability, the ‘fractionation of the 
triad’ theory [3] inspired a line of research, which iden-
tified weak-to-moderate behavioural [5–7] and genetic 
[8] correlations between the three domains. Divergent 
developmental trajectories have also been described for 
each domain [9], and the presence of difficulties or dif-
ferences across all domains have only been identified in 
a quarter of the population [9]. These findings, along-
side data which strongly point towards the existence of 
distinct biological influences for each domain [3, 10–12], 
suggest that heterogeneity across autistic people is pre-
sent at the cognitive, behavioural and biological level 
[13]. To understand this complexity and advance under-
standing of phenotypic heterogeneity in autism, research 
has increasingly focused on individuals with genetic syn-
dromes, in which phenotypic heterogeneity of autistic 
characteristics is frequently described [14].

Individuals with genetic syndromes associated with 
intellectual disability  (ID) are more likely to evidence 
autistic characteristics compared to individuals in the 
general population [15, 16]. While specific prevalence 
rates of autistic characteristics are variable across differ-
ent genetic syndrome groups, robust evidence demon-
strates increased prevalence of autistic characteristics 
across this population. Based on a recent population-
based study, 10–18% of autistic individuals also have a 
co-occurring ID, often as part of a known genetic syn-
drome [17]. However, individuals with genetic syndromes 
often demonstrate syndrome-associated autism profiles, 
highlighting the presence of subtle quantitative and qual-
itative differences in phenotypic expression of autism 
[18–24]. It has been suggested that these cross-syndrome 
phenotypic differences reflect ‘milder’ manifestations of 
autistic characteristics in genetic syndromes compared 
to non-syndromic autism [21]. This explanation is insuf-
ficient and potentially harmful given that the presenta-
tion of autistic traits is atypical rather than ‘milder’ and 
there is no evidence to support that such presentations of 
autistic traits are less clinically and functionally impactful 

for individuals relative to the profile of autistic character-
istics typically associated with non-syndromic autism.

Within-syndrome phenotypic variability and cross-
syndrome phenotypic similarities have also been 
documented [25]. For example, different genetic syn-
dromes evidence an overlap in autism-related pheno-
typic expression [15, 25–27], suggesting that different 
genetic syndromes might be associated with distinct, 
but also partially shared autism profiles. This vast vari-
ability in autism phenotypic expression between and 
within genetic syndromes coupled with ID predisposes 
to high rates of misdiagnosis or diagnostic overshadow-
ing [28]. Detailed descriptions of autism-related profiles 
across genetic syndromes could lead to the development 
of more sensitive and specific autism and related assess-
ments and further encourage individualised approaches 
to autism screening and diagnostic assessments for indi-
viduals with complex clinical needs.

Using an established support vector machine (SVM) 
learning approach, previously adopted by Bruining et al. 
[29] and more recently by Lee et  al. [24], we generated 
fine-grained descriptions of autistic characteristics in 
individuals with one of the thirteen genetic syndromes. 
Aim 1: The primary aim of this study was to replicate 
and extend previously reported ‘behavioural signatures’ 
(interchangeably referred as ‘profiles’ in this study) of 
autism in individuals with rare genetics syndromes [29] 
in a considerably larger sample (n = 1582) including both 
adults and children with thirteen genetic syndromes and 
autistic people without a genetic syndrome. Aim 2: To 
understand whether and how much variability in adap-
tative behaviour skills contributed to the generation of 
these behavioural signatures. Aim 3: To test whether mis-
classified individuals with genetic syndromes were alter-
natively classified into another syndrome group or the 
autistic group. Aim 4: To understand which items on the 
Social Communication Questionnaire were more or less 
likely to contribute to the specific signatures within each 
group.

Method
Participants
This study used retrospective baseline data from one of 
the largest cross-syndrome databases in the UK (held at 
a UK-based university). The total sample included 1702 
individuals with genetic syndromes  associated with ID 
and 264 autistic individuals with varying levels of adap-
tive skills. The database was first set up in 2003, and the 
last follow-up was completed in 2018. The first wave of 
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data collection included eight behavioural and health 
measures as well as diagnostic information (i.e., pres-
ence/absence of a genetic syndrome). As part of the 
follow-ups, more measures and groups (including austis-
tic individuals without a genetic syndrome) were added 
to the database. Currently, this database represents the 
largest longitudinal data on individuals with genetic syn-
dromes associated with ID in the UK.

Each of the thirteen genetic syndromes was included 
in this paper due to their reported increased likelihood 
of autism compared to the general population [16]. We 
also used opportunity sampling based on the data avail-
able at the time of analysis. In total, 1582 individuals with 
genetic syndromes and 258 autistic individuals who did 
not have a known genetic syndrome, all over four years of 
age, were included in the analysis. The genetic syndrome 
groups had varying sample sizes and included: Angelman 
(AS, n = 154), Cri du Chat (CdCS, n = 75), Cornelia de 
Lange (CdLS, n = 199), fragile X (FXS, n = 297), Prader–
Willi (PWS, n = 278), Lowe (LS, n = 89), Smith–Magenis 
(SMS, n = 54), Down (DS, n = 135), Sotos (SS, n = 40), 
Rubinstein–Taybi (RTS, n = 102), 1p36 deletion (n = 41), 
Phelan-McDermid (PMS, n = 35) syndromes and tuber-
ous sclerosis complex (TSC, n = 83). Individuals in these 
groups were included in the analysis irrespective of the 
presence or absence of an autism diagnosis.

Due to missing data (> 30%) or unsuitable age for 
assessment of social and communication skills with the 
SCQ (3  years or younger), 120 individuals with genetic 
syndromes (AS n = 3; FXS n = 21; PWS n = 25; RTS n = 3; 
CdLS n = 25; DS n = 9; CdCS n = 6; 1p36 n = 6; LS n = 7; 
SMS n = 6; TSC n = 4; SS n = 10; PMS n = 1) and 6 autis-
tic individuals without a genetic syndrome were excluded 
from the study. For demographic characteristics of the 
entire sample, refer to Table 1.

Recruitment
Potential participants and their parents/carers were 
invited to take part in a questionnaire survey evaluating 
the behavioural characteristics associated with a range of 
genetic syndromes. Questionnaire responses were col-
lected from 2003 to 2018. Participants were recruited 
via syndrome support groups/associations (e.g., Fragile 
X Society UK, CdLS Foundation UK and Ireland and the 
National Autistic Society). The recruitment strategy was 
agreed between the former research centre and the rele-
vant associations/charities to maximise recruitment suc-
cess and minimise potential burden on the participants. 
Favourable ethical approval was granted by the Coventry 
Research Ethics Committee (REC, 10/H1210/1), and the 
current study underwent institutional governance review. 
Individuals with genetic syndromes were included in the 
study if they reported receiving a diagnosis of the genetic 

syndrome from an appropriate professional (i.e., a paedi-
atrician, clinical geneticist, general practitioner, psychia-
trist, or neurologist). Parents and caregivers were also 
invited to share genetic confirmation letters (where such 
a record of genetic information was available, and fami-
lies consented to genetic confirmation sharing). Autistic 
individuals without a genetic syndrome were included 
in the analysis if they reached the suggested threshold 
for autism or autism spectrum disorder (ASD) on the 
SCQ, indicated that an autism diagnosis had been made 
by an appropriate professional (i.e., these participants 
had received a diagnosis of autism from a clinical psy-
chologist, psychiatrist, educational psychologist, speech 
and language therapist, paediatrician, general practi-
tioner) and confirmed the absence of a genetic syndrome 
diagnosis.

Inclusion criteria for the current study included: (1) 
presence of a rare genetic syndrome or autism, or both, 
(2) age 4  years or older, (3) an ability of the caregiver/
child/adult to provide informed consent or assent to par-
ticipate in the study as appropriate to their capacity to 
consent/assent, (4) the informant/participant should be 
fluent in English. All participants who met the inclusion 
criteria outlined above were included in the analysis.

Measures
Social Communication Questionnaire (SCQ) [30]
The SCQ is a widely used screening tool, which focuses 
on autistic characteristics [30]. This parent/caregiver-
report questionnaire is based on the Autism Diagnostic 
Interview- Revised (ADI-R), which is a well-established 
diagnostic interview [31]. The SCQ has also been used 
for understanding autism-related behavioural pheno-
types in populations with genetic syndromes and genetic 
population studies of autism [15].

The SCQ consists of 40 items with a binary response 
(yes/no). The measure is suitable for individuals who are 
4 years or older. There are two versions of the SCQ, life-
time and current. The lifetime version assesses the entire 
developmental history of the participant, which is used to 
support diagnostis or to indicate that a diagnosis should 
be considered. The current version focuses on the partic-
ipant’s behaviour in the past 3 months, which is suitable 
for assessing current autistic traits for support and edu-
cational plans. SCQ items are scored as 0 and 1; 0 reflects 
an absence of the relevant behaviour, and 1 reflects the 
presence of the relevant behaviour. A cut-off score of 15 
or greater is suggested by the authors of the measure to 
indicate the presence of autism spectrum disorder. In the 
current study, the lifetime version of the SCQ was used.
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Wessex questionnaire [32]
This scale quantifies self-help skills for children and 
adults with intellectual disability, which resulted in its 
common use in individuals with genetic syndromes [15, 
33–35]. The items enquire about a variety of different 
adaptive skills, forming five subscales: self-help skills, 
speech, vision, hearing and mobility. For the current 
study, the self-help total score, with a maximum of 9, 
was used. Self-help scores of 6 and over are classified as a 
moderate level of skill. The term ‘typical’ has been used to 
replace the original questionnaire term ‘normal’, in keep-
ing with current terminology.

Statistical analysis
Standard principal component analysis (PCA) based 
on the SCQ items was used to investigate the extent of 
overlap between the autism profiles across the thirteen 
genetic groups (Additional file 1: Fig. S1). We conducted 
PCA to confirm previous findings that indicate PCA, as 
an unsupervised analysis, is not the right type of analy-
sis to generate autism-related profiles for genetic syn-
dromes [1]. For Additional file  1: Fig. S1, the first two 
components (PC1 and PC2), which explained the largest 
amount of the variance, were selected. The PCA revealed 
two main clusters, separating mostly individuals who use 
few or more words from individuals who use no words 
(A. Additional file  1: Fig. S1). Following this, language 
items were excluded from the analysis resulting in a sin-
gle cluster (B. Additional file 1: Fig. S1).

The lifetime version of the SCQ was used, and all 40 
items were included in the analysis. However, the tradi-
tional binary scoring (1 = Yes, 0 = No) was not reflective 
of the heterogeneity of language ability across the sam-
ple (e.g., language delay vs no language use across the 
lifespan). For this reason, an additional score of 2 was 
introduced for the six language-related items for all par-
ticipants to indicate the absence of language use rather 
than the absence of autistic-related characteristics for 
these items across the lifespan. This new score allowed us 
to include all items for all participants in the classifica-
tion analysis and capture language heterogeneity at the 
same time. The coding of all items including the language 
items is processed as categorical (rather than ordinal) by 
the model. As a result, the model generates a pattern of 
responses for each syndrome group. A score of 2 is there-
fore not weighted as more important/influential than a 
score of 1 or 0 by the model. However, if a group tends to 
score 2,1 or 0 on most language items, this type of scor-
ing pattern can help create a unique profile for this group.

Similarly to previous studies [29], the SVM approach 
was adopted to provide better predictive accuracy of 
genetic groups of the thirteen genetic syndromes based 
on their SCQ scores. In essence, an SVM training 

algorithm uses training exemplars (in this case, with each 
exemplar being the list of item-level SCQ responses for a 
given individual) with their category classes (in this case 
syndrome group membership) to build a model which 
can then be used to classify novel exemplars (cases). To 
build the model, the SVM maps training exemplars to 
high-dimensional space in a manner which maximises 
space between exemplars of different categories, and a 
hyperplane/set of hyperplanes are constructed to sepa-
rate the categories.

Technical specifications were also consistent with pre-
viously identified optimal parameters (e.g., the use of 
radial kernel, the choice of cross-validation method and 
the approach to generating gamma and cost parameters) 
[29]. The n-fold validation uses n-1 observations or leave 
one observation out of the whole sample and builds the 
SVM classifier on the remaining observations. Previously, 
this method has allowed for an independent estimate of 
the accuracy of the entire SVM model on the entire sam-
ple [29]. Building the model requires determining the 
optimal values of the gamma and cost parameters. Using 
random search of gamma and cost parameter values (up 
to 100 combinations), the performance of the model was 
further optimised. Based on the random search, accuracy 
of the SVM classifier for each combination of gamma and 
cost parameters was evaluated and the combination of 
values giving the highest accuracy was chosen. To iden-
tify the best parameters, the entire dataset was split in 
two halves. One half served as the training set, and the 
other half served as the test set. To deal with unequal 
sample sizes across syndrome groups, at least fifteen 
participants from each syndrome group featured in the 
training set at the stage of identifying the parameters 
with the highest accuracy. Once the best combination of 
gama and cost parameters had been identified, the model 
was trained and tested on the entire sample size, which 
further helped to reduce over or underestimation of clas-
sification accuracy for certain groups.

The final SVM model adopted multiclass classification, 
reflecting training of multiple binary classifiers, or map-
ping data points to dimensional space to gain mutual lin-
ear separation between every two classes. The multiclass 
classification uses a ‘one-to-one’, or ‘one-against-one’ 
approach where k(k-1)/2 (k is the number of the classes) 
[29]. The final output of the SVM model assigns each of 
the data points into a ‘predicted’ class, which is the most 
frequently chosen class by the binary classifiers. Apart 
from classification accuracy, the decision values of the 
binary classifiers can also generate predicted probability 
for each class, which can be an alternative way to assess 
the confidence of the SVM predictions.

We also carried out an item-level analysis, in which we 
evaluated each of the SCQ items within each group in 
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order of their importance to the classification results on 
a scale from 0 to 100, indicating lowest to highest impor-
tance, respectively. Although the output of this analysis 
provides data on all items, we reported the five most and 
the five least important items for each syndrome group 
for interpretation purposes and consistent with previous 
research [29]. For the selection of the items, the following 
criteria were used: a score of 20 or lower for the five least 
important items and a score of 50 or higher for the most 
important items. However, it is important to note that 
the variability across groups was substantial and some 
groups evidenced scores as high as 100 for some items 
(e.g., RTS group), while other groups evidenced scores 
of 50 for most items (e.g., FXS group). This indicates 
that for some groups, most SCQ items might have been 
equally important for their classification results, while for 
others only certain items might have been particularly 
important. The selection of the cut-off criteria was data-
driven and exploratory. In line with previous work [29], 
this study adopted libSVM, via the SVM function in the 
e1071 library in R [36, 37].

Results
SVM classification
To address Aim 1, advanced statistical methods, which 
allowed inclusion of the genotype membership into the 
analysis, were adopted. Using this multiclass approach, 
55% of the individuals with genetic syndromes were accu-
rately classified in the appropriate genetic group (Table 2 
and Fig.  1). In comparison, analysis such as PCA does 
not integrate knowledge of the genotype or classifica-
tion approaches. Instead, they provide a good represen-
tation of the overlap between different individuals across 
the different groups, which, however, did not allow the 
opportunity to generate autism-related profiles based on 
the SCQ scores (Additional file 1: Fig. S1). Groups with 
the highest classification accuracy (AS, FXS, PWS, RTS) 
and moderate classification accuracy (CdCS, CdLS, 1p36, 
SMS) showed the highest post hoc predicted probabil-
ity for allocation to the appropriate group. By contrast, 
groups with the lowest classification accuracy (LS, SS, 
TSC, PMS) showed equal post hoc predicted probability 
for groups different from their group (Table 2).

The validity of the prediction model was also tested by 
correlating the predicted probabilities with the number 
of individuals correctly assigned to the relevant genetic 
class/group. As previously shown [29], strong, positive 
correlations between the predicted probability and the 
number of individuals correctly assigned to the relevant 
genetic group emerged (see Additional file  1: Table  S1), 
which highlights the validity of the prediction model.

After including all participants in the initial analy-
sis, a sensitivity analysis was also conducted with the 

participants who met or scored above the suggested cut-
off scores for ASD on the SCQ. Both sets of analyses gen-
erated comparable results, suggesting that variation in 
SCQ scores (i.e., higher scores) did not influence the gen-
eration of the identified profiles.

Misallocation
The poor prediction for some of the groups was a result 
of frequent misallocation to a specific other genetic syn-
drome group. For instance, individuals from the CdCS 
and CdLS groups were most frequently misclassified into 
the AS group; individuals from the LS, SMS, SS into the 
FXS group; individuals from the DS and the RTS into the 
PWS group; individuals from the 1p36 and PMS into the 
CdLS group and individuals from the TSC group were 
equally likely to be misclassified into the CdLS, FXS and 
PWS groups.

Self-help skills as an additional predictor
To address Aim 2, the analysis was repeated adding 
self-help scores as an additional predictor. The average 
accuracy of the SVM model remained the same (55%), 
suggesting that self-help skills were not a confounding 
factor. However, the prediction accuracy for some of 
the genetic groups slightly improved (CdCS, PWS, DS, 
TSC, PMS 1p36) or declined (AS, CdLS, RTS), suggest-
ing that self-help skills might explain a small proportion 
of the variance in autistic characteristics for these groups 
(between 2 and 9%) (Additional file  1: Table  S2). For 
example, AS and PMS were both associated with lower 
self-help scores, but autism-related profiles were clearly 
dissociable and classification accuracy differed, sug-
gesting that the manifestation of autistic characteristics 
is at least partly independent of self-help skills in these 
groups.

Inclusion of the autistic group
To understand the effect of non-syndromic autism on 
the classification accuracy, a group of autistic individuals 
without a genetic syndrome was included in the analysis 
(Aim 3). It was predicted that syndrome groups showing 
high levels of autistic characteristics and low classifica-
tion accuracy will be more likely to be misclassified into 
the autistic group. The addition of the autistic group did 
not change the average accuracy of the model. However, 
the classification accuracy of the FXS group reduced sub-
stantially. Individuals with FXS were more likely to be 
misclassified into the autistic group and vice versa (Addi-
tional file 1: Table S3), despite high classification accuracy 
for both groups, suggesting that the FXS and the autistic 
groups show specific but overlapping phenotypes. To a 
lesser extent, individuals in the PWS and the TSC groups 
were also misclassified into the FXS or/and the autistic 
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group. Regarding AS, RTS, CdLS, CdCS, DS, 1p36, LS, 
SMS, and PMS, they remained more likely to be mis-
classified as other syndrome groups, regardless of small 
improvements in classification accuracy, suggesting that 
lower phenotypic specificity does not necessarily reflect a 
greater phenotypic overlap with the autistic group for all 
individuals or groups (Additional file 1: Table S3).

Item-level analysis
To address Aim 4, a within-syndrome analysis revealed 
that the top five most and least contributing items varied 
as a function of group (Table 3 and Fig. 2). Items enquir-
ing about the quality of social interaction (item 20), 
imaginative play (item 32) and complicated body move-
ments/gestures (items 16) were identified within the top 
five items contributing to classification accuracy across 
a large proportion of syndromes (e.g., FXS, PWS, RTS, 
1p36, LS, SMS, TSC, PMS). By contrast, items related to 
communication (Items 2, 6, 7, 3, 4) contributed substan-
tially to the classification prediction of a smaller propor-
tion of the syndrome groups (RTS, 1p36, DS, TSC). A 
mixture of the listed items contributed to the prediction 
accuracy of the syndrome groups with both the highest 
(AS) and the lowest (PMS) classification accuracy (Fig. 1). 
For some syndrome groups (e.g., AS, CdLS, CdCS), most 
items had equal contributions to the model. Crucially, 
lower contribution of certain items does not suggest an 

absence of the particular autistic characteristic for the 
particular group. Instead, lower contribution indicates 
that this item does not contribute considerably to the 
performance of the model.

Discussion
This study extended previous findings of different but 
partially overlapping autism profiles across thirteen 
genetic syndromes [29] in a large sample of 1582 indi-
viduals. This approach allowed us to gain a detailed 
understanding of syndrome-associated profiles of autis-
tic characteristics across a large number of syndrome 
groups, using a consistent screening tool. The findings 
highlight the need to refine measures of autism for use 
in this population, in order to improve the precision of 
assessment of autism and related needs in these groups. 
This will be beneficial to ensure timely and effective 
access to the most appropriate support which takes into 
consideration these syndrome-associated autism profiles.

The current study indicated substantial overall accu-
racy of the model (55%). While findings indicated a lower 
number of correctly classified individuals (i.e., classifi-
cation accuracy) (55%) compared to earlier work (63%) 
[29], the inclusion of such a large number of genetic 
syndrome groups is likely to have increased the chance 
of misclassification relative to previous work; as SVM 
is originally designed for binary rather than multiclass/

Fig. 1 Visual representation of the SCQ profiles in individuals with genetic syndromes and autistic individuals. This figure provides a visual 
representation of the diversity and similarity of SCQ profiles across genetic syndromes and their distinctiveness compared to the SCQ profile of 
the autistic group with genetic syndromes. The x axis represents each of the 40 SCQ items. The y axis represents the overall pattern of responses 
(i.e., “Yes (1)”/”No (0)”/”No language use (2)”) for each item for the respective genetic group. The different colours allow discrimination between 
the groups. AS Angelman syndrome, FXS Fragile X syndrome, PWS Prader–Willi syndrome, RTS Rubinstein–Taybi syndrome, CdLS Cornelia de Lange 
syndrome, DS Down syndrome, CdCS Cri du Chat syndrome, LS Lowe syndrome, SMS Smith–Magenis syndrome, SS Sotos syndrome, TSC Tuberous 
sclerosis complex, PMS Phelan-McDermid syndrome, 1p36 1p6 deletion syndrome, ASD Autism spectrum disorder. Total All individuals with genetic 
syndromes, SCQ Social Communication Questionnaire
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group classification. Nevertheless, the classification accu-
racy of the model is substantial given the inclusion of 13 
groups. This large and diverse sample further enables 
greater understanding of whether variation in sample 

size affects misclassification patterns for individual syn-
dromes. For instance, classification accuracy for the DS 
group was higher in this study with a larger sample of 
individuals with DS (n = 135, 41%) compared to previous 

Table 3 The level of contribution of each SCQ item to the predictions of the SVM model

 + reflects the top five items, which contribute the most to the model,—represents the top 5 items, which contribute the least to the model for each syndrome group. 
These symbols ( ±) do not represent high or low scores on these items, they represent the level of contribution to the classification model

AS Angelman syndrome, CdCS Cri du Chat syndrome, 1p36 1p6 deletion syndrome, CdLS Cornelia de Lange syndrome, FXS fragile X syndrome, PWS Prader–Willi 
syndrome, LS Lowe syndrome, SMS Smith–Magenis syndrome, DS Down syndrome, SS Sotos syndrome, RTS Rubinstein–Taybi syndrome, TSC Tuberous sclerosis 
complex, PMS Phelan-McDermid syndrome, ASD Autism spectrum disorder

SCQ characteristics AS FXS PWS RTS CdLS DS CdCS 1p36 LS SMS TSC SS PMS ASD

1. Short phrases −  + 

2. Reciprocal Conversation  +  +  + 

3. Odd phrases  +  +  +  + 

4. Inappropriate questions −  + −  + −  + − −
5. Pronoun reversal  + −  +  + − −  +  + 

6. Made up words −  +  + −  + 

7. Phrase/word repetition  + 

8. Repetitive rituals − −
9. Inappropriate facial expressions − − −
10. Use others as tools − − − −
11. Unusual interests − − −
12. Interested in parts of objects − − − − − −
13. Unusually intense interests − − −
14. Unusual interest in smell, taste  + −  + 

15. Odd mannerisms

16. Complicated body movements  +  +  +  +  +  +  +  +  +  + 

17. Self−harm  + 

18. Carry objects around − − − − −
19. Best friend  +  +  +  +  + 

20. Friendly conversation  +  +  +  +  +  +  +  +  + 

21. Spontaneous imitation −
22. Spontaneously show interest −  + − − − − −
23. Use gestures −
24. Nod head for "yes" − −
25. Shaked head for "no" −
26. Face-to-face conversation

27. Smile back − − − − −
28. Special interests

29. Share things with others −  + 

30. Invite to join in their enjoyment − −
31. Offer comfort − −
32. Eye contact  +  +  +  +  +  +  +  +  +  + 

33. A range of facial expressions − −
34. Spontaneous social play

35. Pretend games

36. Interested in unknown peers − −
37. Positive approach to peers

38. Pay attention to one’s voice − − − −
39. Imaginative play  +  +  +  +  +  +  +  +  +  + 

40. Cooperative play −  + −
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classification reports (n = 21, 10%). However, individu-
als from the DS group remained to be most misclassified 
into the PWS group across both studies [29], indicating 
consistent profile similarities and differences across syn-
dromes regardless of the sample size. Larger sample sizes 
may therefore improve classification accuracy as a func-
tion of mathematical dependency (i.e., the more indi-
viduals in a group, the more opportunities of accurate 
classification). However, the misclassification patterns 
(i.e., the type of groups the misclassified individuals are 
placed in) do not vary as a function of sample size. Fur-
thermore, the CdLS group (n = 199) was of a comparable 
size to the AS group (n = 154), and still showed consider-
ably lower classification accuracy (49%) compared to the 
AS group (84%), indicating lower phenotypic specificity 
of autistic traits in the CdLS group compared to the AS 
group irrespective of sample size. Nevertheless, variable 
sample sizes might have resulted in lower accuracy for 
smaller groups (n = 40 or less), which reduces the gener-
alisability of our results. Future studies should consider 
either using groups with identical sample size (i.e., mini-
mum n = 200 for each group) or a very large total sam-
ple size (n = 6000 or more participants) to confirm these 
findings. Given the rarity of some syndrome groups, a 
combined effort from multiple research centres across 
the world is likely to increase the chance of providing 
conclusive evidence.

In line with the accuracy scores and based on visual 
inspection of the data (Fig.  1), it was further observed 
that four of the genetic syndromes (AS, FXS, PWS, RTS) 
were associated with distinct autistic profiles, which 

were clearly separable from the profiles of other groups 
(CdLS, DS, CdCS, 1p36, LS, SMS, TSC, SS and PMS) 
(70% or more classification accuracy). By contrast, the 
rest of the syndrome groups either showed partial (e.g., 
CdCS, CdLS, DS, 1p36 deletion), or no profile separabil-
ity (e.g., LS, SS, SMS, TSC, PMS) (7% or less classifica-
tion accuracy). These findings are consistent with earlier 
autism-related phenotyping in genetic syndromes using 
parametric comparisons [15]. Nevertheless, a noticeable 
overlap is also observed across syndrome groups with 
relatively distinct autism profiles (e.g., pronounced social 
interaction difficulties or differences in CdLS and FXS) 
[27, 38–41]. Together, these findings suggest a consider-
able autism-related phenotypic overlap between different 
syndrome groups and considerable autism-related phe-
notypic variability within syndrome groups, supporting 
recent findings in genetic syndromes [25]. In line with 
the studies, the findings provide further evidence that 
the presence of a genetic syndrome seems to increase the 
likelihood of both autistic traits and autism profiles that 
are subtly different in nature relative to that observed in 
autistic individuals who do not have a genetic syndrome. 
The findings also highlight the importance of considering 
both within- and between-syndrome similarities and dif-
ferences as part of clinical and educational support ser-
vices for individuals with genetic syndromes who show 
autistic characteristics.

Documenting autistic characteristics in individuals 
with varying levels of intellectual functioning is par-
ticularly challenging [21].While it was not possible to 
evaluate the effect of cognitive impairment specifically 
in this study, we were able to consider the contribution 

Fig. 2 Heatmap – distribution of SCQ items for each syndrome group. “Blue” indicates that more than 50% of the individuals in this group scored 
“Yes (1)” on the respective item. “White/No colour” indicates that ~ 50% of the individuals scored “Yes (1)” on the respective item. “Red” indicates 
that less than 50% of the individuals scored “Yes (1)”. The saturation of the colour indicates the number of individuals (the darkest blue indicates all 
individuals scored “Yes (1)”, and the darkest red indicates none of the participants scored “Yes (1)” on this item. (Notes The non-verbal participants 
were coded as non-responders for the items requiring a verbal ability for the purposes of this figure). AS Angelman syndrome, FXS Fragile X 
syndrome, PWS Prader–Willi syndrome, RTS Rubinstein–Taybi syndrome, CdLS Cornelia de Lange syndrome, DS Down syndrome, CdCS Cri du 
Chat syndrome, LS Lowe syndrome, SMS Smith–Magenis syndrome, SS Sotos syndrome, TSC Tuberous sclerosis complex, PMS Phelan-McDermid 
syndrome, 1p36 1p6 deletion syndrome



Page 11 of 14Bozhilova et al. Molecular Autism            (2023) 14:3  

of self-help skills (as an estimate of intellectual func-
tioning). In the current analysis, self-help skills were 
added as an additional predictor. Although the addi-
tion did not change the average classification accuracy, 
some groups showed minimal improvement (CdCS, 
PWS, DS, TSC, PMS, 1p36) or decrease (AS, CdLS, 
RTS) in accuracy. This finding indicates that self-help 
skills might explain a small proportion of the variance 
in autistic characteristics, although the manifestation of 
autistic characteristics across syndrome groups appears 
largely independent of self-help skills, supporting pre-
vious findings [20, 29, 42, 43]. Future research should 
still consider investigating whether the degree of intel-
lectual functioning, language ability and self-help skills 
affects the diagnostic process and access to support. 
For instance, individuals with genetic syndromes and 
higher scores on self-help skills measures might have 
an atypical presentation of autistic traits or engage in 
compensatory strategies, resulting in further diagnostic 
uncertainty and overshadowing. Diagnostic uncertainty 
is then expected to result in delayed or limited access to 
support. Delayed support could be particularly damag-
ing for this cohort of individuals, as they often experi-
ence a high degree of autism-related challenges despite 
the heterogeneity of observable autistic traits [21].

The inclusion of individuals who speak no or few 
words resulted in two clearly separable PCA clusters 
and higher attribution of importance to items measur-
ing atypical communication by the model (Additional 
file  1: Fig. S1). A single PCA cluster and higher attri-
bution to items assessing quality of social interaction 
(i.e., cooperative play) emerged only after the exclu-
sion of the communication-related items, consistent 
with earlier studies including individuals who speak 
in full sentences [29]. This finding suggests that qual-
ity of social interactions might capture the specificity 
of autism profiles across syndrome groups who speak 
few or more words. By contrast, broad communica-
tion difficulties or differences might be more charac-
teristic for syndrome groups, who use/speak no words 
regardless of whether they meet diagnostic cut-off for 
autism. These findings suggest that capturing variability 
in social-communicative skills across syndrome groups 
might improve diagnostic sensitivity and specificity in 
genetic syndromes. In particular, individuals who have 
few or no words might still have a pronounced need 
for autism-related support, but differential diagnosis 
of autism in these individuals using traditional autism 
diagnostic assessment tools is likely to be challeng-
ing. Future research may consider developing obser-
vational measures, which rely less on linguistic ability 
to assess the diagnostic utility of social-communicative 
characteristics. Observational measures of autistic 

characteristics, for instance, have shown to capture 
variability in phenotypic expression of autistic charac-
teristics in genetic syndromes better than parent-report 
measures [44, 45].

The identification of similarities and differences in 
autism profiles across autistic individuals with and with-
out genetic syndromes has important clinical implica-
tions. A high degree of overlap between profiles would 
suggest that existing gold standard autism assessments 
would be equally suitable for individuals with genetic 
syndromes, whereas substantial variability across pro-
files might hinder the validity of such assessments, which 
were not designed with such populations and associated 
variability in mind. For this reason, a group of autistic 
individuals without a genetic syndrome was also added 
to the current model, resulting in substantial misclas-
sification of individuals with FXS into the autism group 
and vice versa. This finding supports previous evidence 
of substantial phenotypic overlap [46] between individu-
als with FXS and autistic individuals and further sug-
gests that a traditional approach to autism diagnosis and 
treatment could be beneficial to individuals with FXS. 
To a lesser degree, the TSC and PWS showed a similar 
pattern to the autistic individuals, supporting previously 
identified social-communicative difficulties or differ-
ences as key phenotypic similarities between autism and 
FXS [42, 43] autism and TSC [47] and autism and PWS 
[48, 49]. These findings indicate that greater precision of 
assessment may be necessary in these populations, and 
this requires more in depth/fine-grained evaluation and 
less reliance of traditional, broad brush, cut-off scores. 
A likely explanation is that traditional autism assess-
ments rarely factor in the presence of varying levels of 
language development and intellectual disability [54]. 
Consequently, syndrome groups with a greater incidence 
of typical speech/language development or higher adap-
tive skills scores have more opportunities to score on 
the SCQ measure compared to syndrome groups with 
a lower incidence. Future research should thus focus 
on evaluating whether diagnostic assessments adjusted 
to the individual profile of autistic characteristics iden-
tified in a given genetic syndrome will lead to higher 
diagnostic certainty and timely provision of support for 
autistic individuals with genetic syndromes compared to 
traditional assessments. Item-level analysis conducted in 
this study provides a basis for refinement of assessment 
tools to improve sensitivity and specificity for detect-
ing syndrome-associated autism profiles. This analysis 
clearly demonstrated that a different selection of items 
has contributed to the model differentially across groups, 
suggesting that the development of precise and person-
alised assessments would require a differential selection 
of diagnostic items across syndrome groups, as well. In 
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line with earlier propositions, the presence of a genetic 
syndrome seems to increase the propensity for autistic 
characteristics and syndrome-associated profiles, but 
additional factors might be necessary to meet current 
diagnostic cut-off for autism [50–53].

Limitations
The SCQ [30] focuses primarily on social interaction 
and communication abilities, with a less pronounced 
focus on repetitive and restricted behaviours, during a 
specific developmental period (4–5  years). On the one 
hand, this specific developmental period allows a com-
parison across individuals with a wide age range. On the 
other hand, divergent developmental pathways for autis-
tic characteristics have already been observed in genetic 
syndromes (FXS and CdLS, CdLS and CdCS), which have 
been defined by pronounced phenotypic similarities in 
early development [54]. Cross-sectional studies should 
therefore be interpreted cautiously as the manifestation/
level of autistic characteristics across genetic syndromes, 
and heterogeneous autism seems to vary as a function 
of age. Although parents and carers were asked to con-
sider their children’s behaviour across the lifespan, the 
parents and carers of older participants might have been 
more likely to experience a reporting bias for the ques-
tions concerning their child’s behaviours between 4 and 
5 years of age, further indicating the low specificity of the 
SCQ for older individuals. Additionally, the presence of 
an ASD diagnosis in individuals with genetic syndromes 
and the type of professional, who diagnosed autistic indi-
viduals with ASD, were not always provided by the par-
ents/carers. Different professionals also provided an ASD 
diagnosis for the autistic individuals without a known 
genetic syndromes and some of them (e.g., General Prac-
titioners) might not have received a specialist ASD train-
ing, which might affect the reliability of the diagnosis. 
Future research should aim to address the imbalance in 
sample size across groups by including syndrome groups 
with a similar sample size and as many individuals in each 
syndrome group as possible. Future research should also 
consider adopting a longitudinal approach and develop-
ing syndrome-associated observational measures which 
could capture variability in phenotypic expression across 
the lifespan better than one-time parent-report meas-
ures [44]. Furthermore, the SCQ is primarily a screening 
tool used to evaluate possible autistic characteristics and 
therefore cannot be relied upon to provide an extensive 
assessment of autism. Future studies should therefore 
consider replication of the study findings using more in 
depth autism assessment tools. Additionally, visualising 
and making meaningful inferences about the nature of 
the hyperplanes used by SVM is challenging due to the 
“black box” nature of the model. Future studies should 

therefore compare different machine learning algo-
rithms/paradigms to determine which best distinguish 
autistic profiles across different genetic syndromes and 
consider stratifying the analyses by taking into account 
verbal ability/diagnosis status/professional providing the 
diagnosis. The use of considerably larger group sizes will 
allow the implementation of this type of analysis without 
losing power.

Conclusions
Using supervised machine learning, this study confirms 
the presence of different but overlapping autism profiles 
across the thirteen genetic syndromes in approximately 
1500 individuals. Defining aspects of phenotypic variabil-
ity and similarity across different genetic groups has the 
potential to improve the accuracy of autism identification 
in individuals with genetic syndromes associated with 
intellectual disability. The findings highlight the need for 
consideration of syndrome-associated profiles of autism 
in order to improve the precision of autism screening, 
diagnostic assessment and support services for individu-
als in these populations [55]. Although this study focuses 
specifically on autistic characteristics in individuals with 
genetic syndromes, a syndrome-associated clinical evalu-
ation for all aspects of each syndrome is equally impor-
tant and would require the same personalised approach.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13229- 022- 00530-5.

Additional file 1: Fig. S1. PCA plots of SCQ-generated autism profiles 
in the thirteen genetic syndromes. Table S1. Correlations between the 
number of individuals assigned to each group and the post-hoc predicted 
probability. Table S2. SVM results after the addition of self-help skills 
(WESSEX) as an additional predictor. Table S3. SVM results after the addi-
tion of the ASD group

Acknowledgements
We are grateful to all of the participants and their parents/carers and to the 
following charities for their support with recruitment to the original research 
study: Angelman Syndrome Support Education and Research Trust, Child 
Growth Foundation, Cornelia de Lange Syndrome Foundation UK & Ireland, 
Cri du Chat Syndrome Support Group, Down Syndrome Association, Fragile 
X Society UK, Prader–Willi Syndrome Association, Lowe Syndrome Trust 
UK, Lowe Syndrome Association USA, Smith–Magenis Syndrome Founda-
tion, National Autistic Society, Phelan McDermind Syndrome Foundation, 
Rubinstein–Taybi Support Group, Tuberous Sclerosis Association and the 1p36 
Family Trust.

Author contributions
NB data curation, formal analysis, methodology, original draft preparation. 
AW conceptualisation, data curation, methodology, review & editing. DA data 
curation, methodology, review & editing. SB data curation, methodology, 
review & editing. HB methodology, review & editing. HC data curation, meth-
odology, review & editing. KE data curation, methodology, review & editing. 
LN data curation, methodology. CO conceptualisation, methodology, funding 
acquisition, review & editing. LP data curation, methodology. CR data curation, 
methodology, review & editing. JW data curation, methodology, review & 

https://doi.org/10.1186/s13229-022-00530-5
https://doi.org/10.1186/s13229-022-00530-5


Page 13 of 14Bozhilova et al. Molecular Autism            (2023) 14:3  

editing. PW statistical analysis, review & editing. HR statistical analysis, review 
& editing. LW data curation, methodology, review & editing. KW data curation, 
methodology, review & editing. JM conceptualisation, methodology, funding 
acquisition, supervision, review & editing. All authors read and approved the 
final manuscript.

Funding
Work conducted in this study was funded by Newlife Foundation, Cornelia de 
Lange Syndrome Foundation UK and Ireland, Baily Thomas Charitable Fund, 
Research Autism and Cerebra.

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Favourable ethical approval for the original data collection was granted by 
the Coventry Research Ethics Committee (REC, 10/H1210/1), and the current 
secondary data analysis study underwent institutional governance review.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 School of Psychology, University of Surrey, Guilford, UK. 2 School of Psychol-
ogy, University of Leicester, Leicester, UK. 3 Autism Centre of Excellence, Griffith 
University, Brisbane, Australia. 4 School of Psychology, University of Birming-
ham, Edgbaston, UK. 5 Department of Child and Adolescent Psychiatry, 
Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. 
6 Mental Health and Wellbeing Unit, Warwick Medical School, University 
of Warwick, Coventry, UK. 7 School of Psychology, College of Health and Life 
Sciences, Aston University, Birmingham, UK. 8 MRC Brain and Cognition Unit, 
University of Cambridge, Cambridge, UK. 9 Francis Crick Institute, London, UK. 
10 School of Psychology, Open University, Milton Keynes, UK. 

Received: 20 September 2022   Accepted: 7 December 2022

References
 1. Tick B, Bolton P, Happé F, Rutter M, Rijsdijk F. Heritability of autism spec-

trum disorders: a meta-analysis of twin studies. J Child Psychol Psychiatry. 
2016;57(5):585–95.

 2. Association AP. Diagnostic and statistical manual of mental disorders 
(DSM-5®): American Psychiatric Pub; 2013.

 3. Happé F, Ronald A. The ‘fractionable autism triad’: a review of evidence 
from behavioural, genetic, cognitive and neural research. Neuropsychol 
Rev. 2008;18(4):287–304.

 4. Havdahl A, Niarchou M, Starnawska A, Uddin M, van der Merwe C, War-
rier V. Genetic contributions to autism spectrum disorder. Psychol Med. 
2021;51:2260–73.

 5. Ronald A, Happé F, Plomin R. The genetic relationship between individual 
differences in social and nonsocial behaviours characteristic of autism. 
Dev Sci. 2005;8(5):444–58.

 6. Ronald A, Happé F, Bolton P, Butcher LM, Price TS, Wheelwright S, 
et al. Genetic heterogeneity between the three components of the 
autism spectrum: a twin study. J Am Acad Child Adolesc Psychiatry. 
2006;45(6):691–9.

 7. Dworzynski K, Happé F, Bolton P, Ronald A. Relationship between symp-
tom domains in autism spectrum disorders: a population based twin 
study. J Autism Dev Disord. 2009;39(8):1197–210.

 8. Warrier V, Toro R, Won H, Leblond CS, Cliquet F, Delorme R, et al. Social 
and non-social autism symptoms and trait domains are genetically dis-
sociable. Commun Biol. 2019;2(1):1–13.

 9. Happe F. Understanding autism: from basic neuroscience to treatment. 
Nature. 2006;442(7103):632–3.

 10. Robinson EB, Koenen KC, McCormick MC, Munir K, Hallett V, Happé F, 
et al. A multivariate twin study of autistic traits in 12-year-olds: testing the 
fractionable autism triad hypothesis. Behav Genet. 2012;42(2):245–55.

 11. Ronald A, Larsson H, Anckarsäter H, Lichtenstein P. A twin study of autism 
symptoms in Sweden. Mol Psychiatry. 2011;16(10):1039–47.

 12. Gotts SJ, Simmons WK, Milbury LA, Wallace GL, Cox RW, Martin A. 
Fractionation of social brain circuits in autism spectrum disorders. Brain. 
2012;135(9):2711–25.

 13. Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics. 
2004;113(5):e472–86.

 14. Persico AM, Bourgeron T. Searching for ways out of the autism maze: 
genetic, epigenetic and environmental clues. Trends Neurosci. 
2006;29(7):349–58.

 15. Oliver C, Berg K, Moss J, Arron K, Burbidge C. Delineation of behav-
ioral phenotypes in genetic syndromes: characteristics of autism 
spectrum disorder, affect and hyperactivity. J Autism Dev Disord. 
2011;41(8):1019–32.

 16. Richards C, Jones C, Groves L, Moss J, Oliver C. Prevalence of autism spec-
trum disorder phenomenology in genetic disorders: a systematic review 
and meta-analysis. The Lancet Psychiatry. 2015;2(10):909–16.

 17. Dunn K, Rydzewska E, Henderson A, Cooper S-A. The health of Scotland’s 
5,709 people with autism and intellectual disabilities. J Intellect Disabil 
Res. 2016;60(7–8):660.

 18. Cornish K, Scerif G, Karmiloff-Smith A. Tracing syndrome-specific trajecto-
ries of attention across the lifespan. Cortex. 2007;43(6):672–85.

 19. Hall SS, Lightbody AA, Hirt M, Rezvani A, Reiss AL. Autism in fragile X 
syndrome: A category mistake? J Am Acad Child Adolesc Psychiatry. 
2010;49(9):921–33.

 20. Mount RH, Charman T, Hastings RP, Reilly S, Cass H. Features of autism 
in Rett syndrome and severe mental retardation. J Autism Dev Disord. 
2003;33(4):435–42.

 21. Moss J, Howlin P. The assessment and presentation of autism spectrum 
disorders in genetic syndromes: implications for diagnosis, intervention 
and understanding the wider ASD population. J Intellect Disabil Res. 
2009;53:852–72.

 22. Moss J, Howlin P, Magiati I, Oliver C. Characteristics of autism spectrum 
disorder in Cornelia de Lange syndrome. J Child Psychol Psychiatry. 
2012;53(8):883–91.

 23. Trillingsgaard A, Østergaard JR. Autism in Angelman syndrome: an explo-
ration of comorbidity. Autism. 2004;8(2):163–74.

 24. Lee NR, Niu X, Zhang F, Clasen LS, Kozel BA, Smith A, et al. Variegation of 
autism related traits across seven neurogenetic disorders. Transl Psychia-
try. 2022;12(1):1–10.

 25. Chawner SJ, Doherty JL, Anney RJ, Antshel KM, Bearden CE, Bernier R, 
et al. A genetics-first approach to dissecting the heterogeneity of autism: 
phenotypic comparison of autism risk copy number variants. Am J 
Psychiatry. 2021;178(1):77–86.

 26. Oliver C, Hagerman R. Trends and challenges in behavioural phenotype 
research. 2007.

 27. Moss JF, Oliver C, Berg K, Kaur G, Jephcott L, Cornish K. Prevalence of 
autism spectrum phenomenology in Cornelia de Lange and Cri du Chat 
syndromes. Am J Ment Retard. 2008;113(4):278–91.

 28. Sloneem J, Moss J, Powell S, Hawkins C, Fosi T, Richardson H, et al. The 
prevalence and profile of autism in Sturge-Weber syndrome. J Autism 
Dev Disord. 2022;52(5):1942–55.

 29. Bruining H, Eijkemans MJ, Kas MJ, Curran SR, Vorstman JA, Bolton PF. 
Behavioral signatures related to genetic disorders in autism. Mol Autism. 
2014;5(1):1–12.

 30. Rutter M, Bailey A, Lord C. SCQ. The Social Communication Questionnaire 
Torrance, CA: Western Psychological Services; 2003.

 31. Rutter M, Le Couteur A, Lord C. ADI-R. Autism diagnostic interview revised 
Manual Los Angeles: Western Psychological Services; 2003.

 32. Kushlick A, Blunden R, Cox G. A method of rating behaviour character-
istics for use in large scale surveys of mental handicap. Psychol Med. 
1973;3(4):466–78.

 33. Wilde L, Wade K, Eden K, Moss J, de Vries P, Oliver C. Persistence of self-
injury, aggression and property destruction in children and adults with 
tuberous sclerosis complex. J Intellect Disabil Res. 2018;62(12):1058–71.



Page 14 of 14Bozhilova et al. Molecular Autism            (2023) 14:3 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 34. Moss J, Oliver C, Arron K, Burbidge C, Berg K. The prevalence and phe-
nomenology of repetitive behavior in genetic syndromes. J Autism Dev 
Disord. 2009;39(4):572–88.

 35. Skuse DH, James R, Bishop DV, Coppin B, Dalton P, Aamodt-Leeper G, 
et al. Evidence from Turner’s syndrome of an imprinted X-linked locus 
affecting cognitive function. Nature. 1997;387(6634):705–8.

 36. Meyer D, Wien FT. Support vector machines. Interface Libsvm Package 
e1071. 2015.

 37. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM 
Trans Intell Syst Technol (TIST). 2011;2(3):1–27.

 38. Moss J, Howlin P, Hastings RP, Beaumont S, Griffith GM, Petty J, et al. Social 
behavior and characteristics of autism spectrum disorder in Angelman, 
Cornelia de Lange, and Cri du Chat syndromes. Am J Intellect Dev Disabil. 
2013;118(4):262–83.

 39. Moss J, Oliver C, Nelson L, Richards C, Hall S. Delineating the profile of 
autism spectrum disorder characteristics in Cornelia de Lange and fragile 
X syndromes. Am J Intellect Dev Disabil. 2013;118(1):55–73.

 40. Moss J, Nelson L, Powis L, Waite J, Richards C, Oliver C. A comparative 
study of sociability in Angelman, Cornelia de Lange, Fragile X, Down and 
Rubinstein Taybi syndromes and autism spectrum disorder. Am J Intellect 
Dev Disabil. 2016;121(6):465–86.

 41. Clifford S, Dissanayake C, Bui QM, Huggins R, Taylor AK, Loesch DZ. Autism 
spectrum phenotype in males and females with fragile X full mutation 
and premutation. J Autism Dev Disord. 2007;37(4):738–47.

 42. Klusek J, Martin GE, Losh M. A comparison of pragmatic language in 
boys with autism and fragile X syndrome. J Speech Lang Hear Res. 
2014;57(5):1692–707.

 43. Smith LE, Barker ET, Seltzer MM, Abbeduto L, Greenberg JS. Behavioral 
phenotype of fragile X syndrome in adolescence and adulthood. Am J 
Intellect Dev Disabil. 2012;117(1):1–17.

 44. Harris SW, Hessl D, Goodlin-Jones B, Ferranti J, Bacalman S, Barbato I, 
et al. Autism profiles of males with fragile X syndrome. Am J Ment Retard. 
2008;113(6):427–38.

 45. Capal JK, Williams ME, Pearson DA, Kissinger R, Horn PS, Murray D, et al. 
Profile of autism spectrum disorder in tuberous sclerosis complex: 
results from a longitudinal, prospective, multisite study. Ann Neurol. 
2021;90(6):874–86.

 46. Lee M, Martin GE, Berry-Kravis E, Losh M. A developmental, longitudinal 
investigation of autism phenotypic profiles in fragile X syndrome. J Neu-
rodev Disord. 2016;8(1):1–10.

 47. Jeste SS, Varcin KJ, Hellemann GS, Gulsrud AC, Bhatt R, Kasari C, et al. 
Symptom profiles of autism spectrum disorder in tuberous sclerosis 
complex. Neurology. 2016;87(8):766–72.

 48. Dimitropoulos A, Ho A, Feldman B. Social responsiveness and compe-
tence in Prader–Willi syndrome: direct comparison to autism spectrum 
disorder. J Autism Dev Disord. 2013;43(1):103–13.

 49. Zyga O, Russ S, Ievers-Landis CE, Dimitropoulos A. Assessment of pretend 
play in Prader–Willi syndrome: a direct comparison to autism spectrum 
disorder. J Autism Dev Disord. 2015;45(4):975–87.

 50. Geschwind DH. Genetics of autism spectrum disorders. Trends Cogn Sci. 
2011;15(9):409–16.

 51. Woodbury-Smith M, Scherer SW. Progress in the genetics of autism 
spectrum disorder. Dev Med Child Neurol. 2018;60(5):445–51.

 52. Bai D, Yip BHK, Windham GC, Sourander A, Francis R, Yoffe R, et al. Associa-
tion of genetic and environmental factors with autism in a 5-country 
cohort. JAMA Psychiat. 2019;76(10):1035–43.

 53. Karimi P, Kamali E, Mousavi SM, Karahmadi M. Environmental factors 
influencing the risk of autism. J Res Med Sci Offi J Isfahan Univ Med Sci. 
2017;22:27.

 54. Cochran L, Moss J, Nelson L, Oliver C, editors. Contrasting age related 
changes in autism spectrum disorder phenomenology in Cornelia de 
Lange, fragile X, and Cri du Chat syndromes: results from a 2.5 year fol-
low‐up. American Journal of Medical Genetics Part C: Seminars in Medical 
Genetics; 2015: Wiley Online Library.

 55. Insel TR. The NIMH research domain criteria (RDoC) project: precision 
medicine for psychiatry. Am J Psychiatry. 2014;171(4):395–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Profiles of autism characteristics in thirteen genetic syndromes: a machine learning approach
	Abstract 
	Background 
	Methods 
	Results 
	Limitations 
	Conclusions 

	Background
	Method
	Participants
	Recruitment
	Measures
	Social Communication Questionnaire (SCQ) [30]
	Wessex questionnaire [32]

	Statistical analysis

	Results
	SVM classification
	Misallocation
	Self-help skills as an additional predictor
	Inclusion of the autistic group
	Item-level analysis

	Discussion
	Limitations

	Conclusions
	Acknowledgements
	References


