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Abstract 

The long-described atypicalities of memory functioning experienced by people with autism have major implica-
tions for daily living, academic learning, as well as cognitive remediation. Though behavioral studies have identified a 
robust profile of memory strengths and weaknesses in autism spectrum disorder (ASD), few works have attempted to 
establish a synthesis concerning their neural bases. In this systematic review of functional neuroimaging studies, we 
highlight functional brain asymmetries in three anatomical planes during memory processing between individuals 
with ASD and typical development. These asymmetries consist of greater activity of the left hemisphere than the right 
in ASD participants, of posterior brain regions—including hippocampus—rather than anterior ones, and presumably 
of the ventral (occipito-temporal) streams rather than the dorsal (occipito-parietal) ones. These functional alterations 
may be linked to atypical memory processes in ASD, including the pre-eminence of verbal over spatial information, 
impaired active maintenance in working memory, and preserved relational memory despite poor context processing 
in episodic memory.

Highlights 

• Brain correlates of memory processes in autism spectrum disorder display functional asymmetries.
• Greater reliance on left than right-hemisphere functioning.
• Greater reliance on posterior than anterior brain functioning.
• Greater reliance on ventral stream than dorsal stream functioning.
• These functional asymmetries may account for memory atypicalities in ASD.
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Introduction
Autism spectrum disorder (ASD) is a lifelong neurode-
velopmental disorder comprising difficulties in social 
communication and interaction, restricted or repetitive 
behaviors or interests, alongside sensory characteristics. 
Autism-specific characteristics in the cognitive and sen-
sory domains are thought to result in atypical memory 
development in this population, which has been noted 
since the first clinical descriptions of the disorder [1–3]. In 
addition, memory abilities help supporting cognitive reha-
bilitation in ASD [4]. Understanding memory is therefore 
of significant interest in ASD, and in this sense, several 
cognitive models have been developed over time [5]. This 
contrasts with the lack of any systematic neural model, 
despite a growing number of publications in this area.

Memory encompasses a complex set of cognitive func-
tions and multicomponent systems. Short-term memory 
stores a limited quantity of information [6], and this has 
been further extended by Baddeley’s model of working 
memory (WM) [7], which emphasizes the manipulation of 
information during cognitive tasks and encompasses two 
modality-specific short-term stores (visuospatial sketchpad 
and phonological loop) that depend on a central execu-
tive. WM involves several cognitive processes: (1) selective 
attention to perceptual information and activation of 
semantic representations, during encoding; (2) sustained 
attention, rehearsal, and inhibition of task-irrelevant infor-
mation, during maintenance; and (3) selective attention 
and pattern completion, during retrieval [8]. By contrast, 
long-term memory (LTM) contains unlimited quantities 
of information held for long durations and includes two 
subsystems, namely the semantic memory that contains 
general knowledge and is associated with noetic awareness 
and the episodic memory. Most studies conducted in ASD 
have focused on episodic LTM, which consists of specific 
memories of personally experienced events, situated in the 
temporal and spatial contexts of their acquisition. Episodic 
LTM is associated with autonoetic awareness and recollec-
tion. Episodic LTM is associated with autonoetic awareness 
and recollection. During encoding and retrieval, episodic 
LTM involves similar cognitive processes to those seen in 
WM, with the difference between the two types of memory 
being found mainly in the way information is stored [9, 10]. 
In WM, storage is kept active by means of rehearsal, while 
storage is supported by the semantic memory system in 
episodic LTM [11].

Neuroimaging studies in memory research either can 
evaluate brain activity during memory tasks compared 
with control conditions, or can explore functional con-
nectivity, i.e., the temporal correlations between spatially 
remote neurophysiological events. The imaging methods 
used are functional magnetic resonance imaging (fMRI) 
and electro-/magnetoencephalography (EEG/MEG): fMRI 

measures the BOLD (blood-oxygen-level-dependent) sig-
nal of cortical and subcortical regions with high spatial 
precision and EEG/MEG measures electrical activity near 
the cortical surface from pyramidal neurons firing simul-
taneously with high temporal and spectral resolutions [12].

For WM, neuroimaging studies in typical development 
(TD) have evidenced a persistent activation and func-
tional connectivity in the absence of stimuli, between 
fronto-parietal and posterior areas [8]. Activation of the 
prefrontal cortex and particularly the dorsolateral part 
have been associated with rehearsal and manipulation of 
information, and activity in parietal areas with attentional 
processes [13]. Activation in posterior areas has been 
associated with WM storage, especially within the same 
specialized perceptual areas that are recruited during the 
processing of low-level features of items at encoding, e.g., 
early visual cortex for visual information [14], left parietal 
areas for verbal ones [15], which was theorized as the sen-
sory-recruitment hypothesis [16, 17]. Moreover, activation 
in the fronto-parietal network is coupled with deactiva-
tion of the default-mode network (DMN) that comprises 
bilateral cortical areas activated during resting state and 
deactivated during any task, located in medial and lateral 
parietal, medial prefrontal, and medial and lateral tempo-
ral cortices [18]. Electrophysiological studies provide evi-
dence that high-frequency gamma oscillations code for 
items, while long-range low-frequency theta oscillations 
are associated with the temporal organization of WM 
items during maintenance [19, 20]. Gamma cycles are 
nested within theta cycles during short-term maintenance 
(nested cycles model) [21], with the ratio of theta to gamma 
cycle length being predictive of WM capacity [22]. Low-
frequency alpha oscillations have been associated with 
local (occipital) inhibition of task-irrelevant information 
[20] and also in WM maintenance at long-range scale [23].

Episodic LTM, by contrast, relies on the storage of infor-
mation associated in TD with the medial temporal lobes 
and other widely distributed cortical areas depending 
on memory tasks. Based on fMRI data, the binding item-
context account [24] posits that item and context repre-
sentations are, respectively, supported by the perirhinal 
and parahippocampal cortices and associated in memory 
by the hippocampus, while the prefrontal cortex mainly 
dorsolateral part enables information processing during 
encoding and retrieval. Linking cognitive and neuroana-
tomical models, the predictive interactive multiple memory 
systems framework [25] emphasizes the functional connec-
tivity between the hippocampus (associated with episodic 
memory), the perirhinal cortex (associated with semantic 
memory), and sensory cortices (associated with percep-
tual representation systems), during memory stages. Elec-
trophysiological studies of episodic LTM mainly focus on 
recognition, allowing an analysis of memory processes. 
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Event-related potential (ERP) studies describe old/new 
effects (consisting in a greater positivity for correctly rec-
ognized old items over correctly rejected new items) occur-
ring on: early potentials (0–300 ms) related to priming, the 
FN400 potential (frontal, negative, around 300–500  ms) 
indexing familiarity, the LPC (late positive—or parietal—
component, around 500–700  ms) indexing recollection, 
then late frontal negativity (indexing post-retrieval moni-
toring) [26–28]. These familiarity-related FN400 and rec-
ollection-related LPC potentials have been, respectively, 
associated with the semantic and episodic memory systems 
in the dual-process theory of recognition [29].

Behavioral studies in ASD primarily focus on episodic 
LTM, providing neuroanatomical hypotheses that have 
been assessed only to a limited extent. Greater difficul-
ties have been reported for complex information process-
ing, particularly in the visual modality [30, 31], suggesting 
reduced connectivity between frontal associative and pos-
terior sensory areas [32]. Individuals with ASD generally 
draw less benefit from the categorical-semantic aspects 
of the to-be-remembered information [33, 34], suggesting 
diminished detection of higher-order similarities between 
related items of information, which possibly implicate 
frontal and medial temporal lobes [35]. It contrasts with 
typical levels of memory performance in  situations that 
provide support for the processing of relational informa-
tion (the task support hypothesis) [33, 36, 37]. Preserved 
item-specific and context-independent memory, alongside 
with greater difficulties in the recollection over familiarity 
process [38–40], suggested dysfunction of the hippocam-
pus that supports binding [37, 41]. It has been more 
recently challenged by findings of a greater visual memory 
both for items and associations in ASD when supported by 
recollection than familiarity [42].

Recently, several meta-analyses have been conducted, 
highlighting a specific pattern in declarative memory 
in ASD. Two specific meta-analyses have been real-
ized on WM [43, 44], one included WM and episodic 
LTM domains [5], and the two most recent focused on 
episodic LTM [45] and face recognition [46]. Meta-
analyses on WM have, respectively, identified an 
overall medium effect size with greater difficulties for 
visuospatial WM compared with verbal WM [44], and 
medium to large effect sizes for both verbal WM and 
visuospatial WM [43]. One meta-analysis reported 
an overall medium effect size for WM, homogeneous 
whatever the type of material either verbal, visual, or 
spatial (with, however, a tendency for medium to large 
for the latter), along with overall low to medium effect 
size for episodic LTM, with a small effect size only for 
verbal LTM, a medium one for visual LTM (inconclu-
sive results for visuospatial LTM), and a similar decre-
ment for associative and non-associative memory [5]. 

Other meta-analyses on episodic LTM have, respec-
tively, reported an overall low to medium effect size, 
with greater difficulties in ASD for complex stimuli 
(sentences and stories), compared with simple stimuli 
(words and pictures) [45], and large deficits for both 
face identity recognition and discrimination [46]. 
Hence, these results point toward greater difficulties 
for visuospatial material over verbal material, which are 
even larger for faces, and greater still for WM over epi-
sodic LTM.

In contrast to consistent cognitive models and behav-
ioral meta-analyses of memory in ASD, reviews and syn-
theses are lacking for neuroimaging studies. Only two 
preliminary reviews have been conducted, concluding 
that there was reduced functional connectivity in WM 
in adolescents with ASD [47], and prefrontal cortex dys-
function as a general factor for episodic LTM difficulties 
in ASD [48]. To address this gap, we conducted a review 
of neuroimaging studies on memory in ASD, including 
both fMRI and electrophysiological studies. We focused 
on WM and episodic LTM studies that represent the 
core of studies on memory in ASD, distinguishing verbal 
material, and visuospatial material, including faces.

Methods
This systematic review has adopted the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
guidelines [49]. The protocol of this review was prospec-
tively registered in the International Prospective Register 
of Systematic Reviews (PROSPERO; CRD42020203766).

Selection criteria
We selected studies with the following inclusion crite-
ria: (1) studies comparing individuals with autism spec-
trum disorder (ASD) and those with TD, regardless of 
age, published in English and in peer-reviewed journals; 
(2) participants with autism presenting one of the spec-
trum phenotypes (i.e., autism, autism spectrum disorder, 
autistic disorder, Asperger syndrome, pervasive devel-
opmental disorders not otherwise specified); and (3) 
neuroimaging studies focusing on working- or episodic 
memory, using electrophysiological—EEG or MEG—or 
fMRI methods, with activation or connectivity measures.

Exclusion criteria were as follows: (1) animal research 
studies; (2) participants presenting autism associated 
with a known medical or genetic condition; (3) studied 
memories not being presented during the task, such as 
autobiographical memories; (4) studies on learning; (5) 
non-declarative memory tasks; and 6) neuroimaging not 
being performed during the memory task (brain/cogni-
tion covariance analyses).



Page 4 of 32Desaunay et al. Molecular Autism            (2023) 14:2 

Information sources and search strategies
A literature search was conducted on PubMed and Web 
of Science databases on August 21, 2020, and updated on 
June 1, 2022, with no oldest limit date. Keywords used 
were both MeSH (Medical Subject Heading) and text 
word terms combined with Boolean terms: “(EEG OR 
MEG OR electroencephalography OR magnetoencepha-
lography OR electrophysiology OR MRI OR Magnetic 
Resonance Imaging OR neuroimaging) AND (autism OR 
Asperger syndrome OR autistic OR pervasive develop-
mental disorder) AND memory.” This led to 459 hits on 
PubMed and 759 hits on Web of Science (Fig. 1).

Limitation of bias was done at two levels. First, the 
first author (PD) screened independently all titles and 
abstracts, leading to 69 full-text articles assessed for 
eligibility. Inclusion of eligible studies was evaluated by 
two authors (PD and BG). Data extraction of included 

studies was conducted by the first author (PD), and a 
verification of extracted data was subsequently real-
ized by two authors (PD and BG). A total of 35 stud-
ies were excluded for following reasons: no memory 
task (n = 17); memory task other than specified (e.g., 
learning) (n = 7); neuroimaging not being performed 
during the memory task (n = 4); other neuroimaging 
techniques than EEG, MEG or fMRI (e.g., tomography, 
functional near-infrared spectroscopy) (n = 4); absence 
of control group, or control group being not neurotypi-
cal (n = 2); and heterogeneous group of patients with 
ASD or other neurodevelopmental disorders (n = 1).

Finally, 34 articles were retained for synthesis, 19 
focusing on WM, and 15 focusing on episodic LTM. 
Risk of bias analyses was also performed with regard to 
the quality of included studies.

Fig. 1 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart describing the studies selection process
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Second, at the outcome level, two authors (PD and BG) 
independently evaluated the quality of included stud-
ies, using the Standard Quality Assessment Criteria for 
Evaluating Primary Research Papers [50]. The checklist 
was used in its original form, and all included studies 
were scored (2 = Yes, 1 = Partial, 0 = No, N/A = not appli-
cable) with complete agreement between both authors. 
Assessment total scores were converted to a percentage 
score that ranged from 77 to 100%. A total of 33 studies 
met criteria for high-quality studies (Kmet score > 80%), 
among which 29 met criteria for very high quality (Kmet 
score > 90%); one study was evaluated of moderate quality 
(Kmet score: 77%). All studies were considered of suffi-
cient quality (see Appendix).

Results
Studies on working memory
Nineteen WM studies were included [51–69] (Table  1), 
16 of which used updating “N-back” tasks. It should be 
noted that N-back tasks may not fully reflect the manip-
ulation of information by the central executive as theo-
rized by the Baddeley model of WM [70], but rather the 
continuous updating of to-be-memorized information, 
which corresponds to storage without manipulation of 
information [71–73]. Included studies were informative 
either on the processing of to-be-memorized informa-
tion only (n = 3), or on maintenance and manipulation of 
information only (n = 12), or both (n = 4), using fMRI for 
15 studies, and electrophysiology for the other four ones.

Effects of the type of material on neuroimaging results
Only one study focused on WM processing of visu-
ally presented verbal information, using letters. Other 
reviewed studies concerned mostly visuospatial informa-
tion (e.g., colored figures, abstract images, or stimulus 
location), including faces. Most of these studies reported 
similar memory performance (thereafter, “performance”) 
between ASD and TD participants, with different pat-
terns of brain activation and connectivity.

Using an fMRI letter N-back task, Koshino et  al. [51] 
identified in the 2-back condition, a pattern of activation 
and connectivity being lateralized right or bilateral poste-
rior in adults with ASD relative to TD, with reduced acti-
vations in left fronto-parietal areas, also in participants 
with ASD relative to TD. These results suggest a more 
visual graphical, i.e., less semantic, processing of letters, 
in spite of similar between-group performance.

Other studies used visuospatial material. Vogan et  al. 
[52] conducted an fMRI 1-back color matching task in 
preadolescent children and observed that when the num-
ber of different colors constituting a figure increased, 
ASD relative to TD children showed diminished per-
formance and diminished parietal activation while 

showing similar activations in bilateral occipital areas 
and fusiform gyri. In a 2-year follow-up study, Vogan 
et  al. [53] observed in the same participants, a greater 
load-dependent activation in parietal lobes only in TD 
controls. The minimal changes they observed in the 
ASD group were limited to occipito-temporal areas, with 
diminished performance on the higher load conditions. 
Results from these two studies suggest preserved activa-
tion within the visual occipito-temporal areas associated 
with the “ventral stream,” while an under-recruitment of 
parietal areas associated with the “dorsal stream,” with 
a limited integration of these two streams during visual 
processing over time. Close to these results, Urbain et al. 
[54] used a visual N-back task with MEG in children and 
identified a greater load-dependent activation in the left 
dorsal parietal cortex in the TD children, while in the left 
ventral parietal cortex in those with ASD. Despite simi-
lar performance, this distinction would reflect a more 
controlled (i.e., top-down) processing of visual stimuli in 
the TD group, while being more automatic (i.e., bottom-
up) in the ASD participants, in line with the distinction 
between dorsal and ventral attentional systems within 
the parietal cortex [74]. In summary, these studies sug-
gest that visual processing during WM tasks is associ-
ated with increased activations in ventral areas alongside 
diminished activation in dorsal areas, in individuals with 
ASD relative to TD.

Three fMRI studies have documented atypical process-
ing of faces in WM in ASD, reporting similar perfor-
mance between ASD and TD groups. Herrington et  al. 
[55] conducted a 1-back task in children using superim-
posed images of neutral or emotional faces and houses, 
with targets containing either same or different faces or 
houses. They observed a similar activation of the fusiform 
gyrus in both groups. By contrast, increased activation of 
the dorsolateral prefrontal cortex was found in the ASD 
group when the target contained a face, suggesting selec-
tive attention in order to further discriminate faces. For 
the TD group, increased activation was found when the 
target contained a house, suggesting selective attention 
in this group was aimed at disregarding the automatic 
percept of a face. Koshino et al. [56] used an N-back task 
with mixed neutral and emotional faces, in adolescents 
and young adults and observed reduced activations in 
both left inferior prefrontal areas usually associated with 
verbal processing and right posterior temporal areas usu-
ally associated with theory of mind, in participants with 
ASD compared with TD. Activations within the bilat-
eral fusiform face areas (FFA), a key structure enabling 
the processing of basic facial features and also involved 
in object identification [75], were similar but atypically 
located in ASD relative to TD (i.e., location of peak acti-
vation differed from that of the TD group), and also less 
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connected to frontal areas. In adults, Kleinhans et  al. 
[57] used a 1-back task with neutral faces and reported 
similar activation of bilateral FFA in ASD and TD groups, 
but was less functionally connected in ASD with both 
the subcortical face processing structures (amygdala and 
superior colliculi) associated with fast emotional atten-
tion for faces [76] and the limbic structures (precuneus 
and posterior cingulate gyri) that enable the processing 
of emotional stimuli [77]. Overall, these results point 
toward ASD participants having a relatively similar level 
of FFA activation, but lower activity and connectivity 
with brain areas related to the attention to faces and their 
socio-emotional processing.

Short‑term maintenance and manipulation
Included studies reported reduced activation of pre-
frontal areas (n = 9), reduced deactivation of the DMN 
(n = 6), and atypical functioning of the WM-related brain 
network (n = 7), mainly during WM maintenance.

First, just over half (i.e., 9/16) of fMRI N-back studies 
found reduced prefrontal activations in ASD relative to 
TD, associated with diminished or enhanced activations 
within posterior areas. In studies reporting reduced pre-
frontal activations in conjunction with enhanced pari-
etal or temporal activation, performance was similar 
between ASD and TD groups in children and adults [51, 
53, 56, 58]. By contrast, other fMRI studies that reported 
reduced prefrontal activations without enhanced parietal 
or temporal activations found significantly diminished 
performance in groups with ASD relative to TD, in chil-
dren and adults [52, 59–61]. Close to these findings, in 
a short report using an fMRI visuospatial mental rota-
tion task requiring manipulation of information, Silk 
et al. [62] found in adolescents with ASD relative to TD 
diminished activations within cortical and subcortical 
(caudate head) frontal regions, with similar parietal acti-
vation, while similar between-group performance. Taken 
together, these results suggest a general, diminished load-
dependent recruitment of the prefrontal areas, being par-
tially or fully offset by enhanced activation in posterior 
sensory and attentional areas.

Second, some studies investigated the DMN, report-
ing atypical deactivation in the higher load conditions 
of fMRI N-back tasks in ASD, with similar performance 
in the ASD and TD groups. In adolescents with ASD 
relative to TD, Chantiluke et al. [59] found in the verbal 
3-back condition, reduced activation of the dorsolateral 
prefrontal cortex associated with enhanced DMN deac-
tivation, suggesting a compensatory process. In adoles-
cents too, Rahko et al. [63] observed similar activation 
of WM areas in the visuospatial 2-back condition and 
similar DMN deactivation in ASD and TD groups. This 
persisted in the 0-back condition in the ASD group 

only and was associated with diminished performance. 
In contrast to these results, Vogan et al. [52, 61] found 
a similar DMN deactivation in a visual 1-back task 
with different levels of difficulty in children and adoles-
cents with ASD and TD, suggesting no reduced load-
dependent modulation of DMN deactivation. However, 
in a 2-year follow-up study with the same participants, 
Vogan et  al. [53] reported a greater longitudinal load-
dependent DMN deactivation in those with ASD com-
pared with TD. In middle-aged adults with and without 
ASD, Braden et  al. [64] identified with a verbal 0-, 1-, 
and 2-back task, similar load-dependent DMN deac-
tivation and similar performance between groups. 
Hence, there are no clear results about DMN deactiva-
tion during WM tasks in ASD.

Third, more recent studies have explored memory 
networks in ASD focusing on slow frequency bands in 
EEG/MEG. Urbain et  al. [58] identified reduced fronto-
temporal alpha connectivity associated with diminished 
performance during a visual 2-back condition in children 
with ASD relative to TD. This points to a less efficient 
WM network during maintenance. Using the same par-
adigm in young and middle-aged adults, Yuk et  al. [65] 
found similar performance across ASD and groups TD, 
but connectivity results differed for each phase. Mainte-
nance was associated with an alpha connectivity network 
common to both groups, with an additional recruitment 
of fronto-parietal areas and increased coherence, and 
recognition was associated with diminished theta coher-
ence between right frontal and left parietal areas, when 
comparing groups with ASD and TD. In adults too, 
Larrain-Valenzuela et al. [66] manipulated memory load 
during a modified Sternberg task and found that for TD 
participants, there was enhanced alpha power in occipi-
tal areas and enhanced theta power in bilateral frontal 
areas when load increased. There was, however, no load-
dependent modulation of alpha and theta power in the 
ASD group, indicating that atypical oscillatory activity 
in ASD may contribute to diminished WM performance. 
More recently, Audrain et  al. [67] identified in a visual 
1-back task in adults with ASD and TD with similar 
performance, that connectivity in the theta band during 
maintenance phase consisted mainly in interhemispheric 
posterior connections in ASD, while being mainly antero-
posterior in TD. In addition, connectivity in the alpha 
band differed in ASD and TD in all WM phases. These 
results point toward a more atypically functioning WM 
maintenance relative to encoding and retrieval stages in 
ASD (theta band), but a global lack of inhibition of task-
irrelevant processes (alpha band). Overall, in spite of 
contrasting results, a decrease in antero-posterior theta 
connectivity seems to characterize the WM maintenance 
phase in autistic individuals. Enhanced recruitment of 
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the alpha band may correspond to a compensatory pro-
cess, enabling greater inhibition to avoid interference.

Other studies on WM networks used fMRI during 
N-back tasks. In middle-aged adults, Braden et  al. [64] 
identified a similar cortico-striatal–thalamic–corti-
cal network of activation in ASD and TD groups but a 
reduced functional connectivity within this network in 
ASD alongside similar performance, when switching 
from 0- to 2-back condition. Using the method of con-
nectivity matrices, Barendse et al. [68] identified a lower 
global efficiency (i.e., diminished transmission of neural 
information within the network in adolescents with ASD) 
along with performance in normal range. More recently, 
Hawco et  al. [69] reported within-group differences in 
the location of prefrontal activations in young adults with 
ASD, associated with a trend for reduced performance 
when compared with TD participants, suggesting a link 
between idiosyncratic prefrontal activation during WM 
and diminished performance.

Studies on episodic long‑term memory
Fifteen studies were included [78–92] (Table  2), which 
were informative either on the processing of memorized 
information only (n = 6), or on memory-related processes 
during either encoding or retrieval phases only (n = 7), or 
both (n = 1), using fMRI or electrophysiological methods.

Effects of the type of material on neuroimaging results
Only one study focused on visually presented verbal 
information. The studies reviewed used mainly visuospa-
tial material including faces. We first describe the elec-
trophysiological and then the fMRI results.

Neumann et  al. [78] were interested in the old/new 
effects with MEG elicited by the recognition of pseudow-
ords or abstract shapes. The memory performance of the 
participants with ASD was lower than TD for the for-
mer type of stimuli and similar for the latter. The authors 
identified an early right occipital activation (100–200 ms) 
in ASD with both kinds of stimuli that did not occur in 
controls, followed by a bilateral old/new effect (200–
500 ms) with shapes in ASD participants reflecting famil-
iarity-based recognition that was more left hemispheric 
in controls. These results suggest that pseudowords were 
processed and recognized similarly to visual material in 
ASD relative to TD participants.

Desaunay et  al. [79] used a visual associative recog-
nition task and identified a similar ERP time-course 
on the occipital P2 (220–270  ms), mid-central FN400 
(350–470 ms), and parietal LPC (600–700 ms) potentials 
in adolescents and young ASD and TD adults, whereas 
performance for ASD participants was lower. Amplitudes 
were reduced in the group with ASD relative to TD on 
both the P2 potential, thought to index an intermediate 

processing stage linking elementary perceptual processes 
with higher-level semantic processes [93], and the FN400 
potential, that reflects both conceptual priming and 
familiarity process [94]. Two ERP studies on face recog-
nition reported similar performance between ASD and 
TD, but differences on both the temporal N170 potential 
(peaking 170  ms, and indexing attention and structural 
perception of faces), and the temporal N250 potential 
(also labeled as EPN, peaking 250 ms, and indexing famil-
iarity-based recognition for faces [95]). In children, Gunji 
et al. [80] found a shorter latency on the N170 potential 
for self, familiar and unfamiliar faces in ASD relative to 
TD. Churches et  al. [81] investigated the recognition of 
unfamiliar faces after a study phase and found reduced 
amplitudes of the N170 and N250 potentials in partici-
pants with ASD relative to TD. In summary, these ampli-
tude decrements suggest reduced attention to visual 
stimuli and reduced integration of low-level perceptual 
into high-level conceptual information and the semantic 
memory system, with a decrease in familiarity strength 
during visual recognition in ASD.

Other studies used fMRI. Greimel et al. [82] studied in 
children and adolescents, the encoding of visually pre-
sented objects superimposed with either faces or houses. 
Despite similar performance at test, encoding of subse-
quently recognized objects presented with a face was 
associated, in ASD relative to TD, with reduced activa-
tions within bilateral inferior and medial frontal gyri and 
the right intraparietal lobule, suggesting that encoding of 
faces in the ASD group was less automatic and less asso-
ciated with social information than in TD. Recently, Lynn 
et  al. [83] evaluated the functional connectivity of the 
FFA for faces versus non-faces (cars) stimuli, at encod-
ing and recognition stages in children, adolescents, and 
adults. TD participants tended to improve performance 
from adolescence to adulthood, while those with ASD 
did not. With faces, the authors found reduced connec-
tivity between bilateral FFA with both prefrontal and 
primary visual cortices in ASD relative to TD. This was 
independent of age and occurred at both stages, suggest-
ing that reduced integration of information between dis-
tributed brain areas may lead to weaker representation of 
faces in memory. These authors also identified in ASD, 
age-related reduced connectivity between the right FFA 
and the visual cortex only during the recognition phase, 
suggesting that memory difficulties with faces may arise 
more during recognition than encoding. Extending these 
results in an updated study, the same team investigated 
the age-related changes in the similarity of FFA activa-
tion [84]. For TD participants, they found an increasing 
overlap of activations within a category (faces, cars) from 
adolescence to adulthood in the right FFA—that pro-
cesses faces holistically while the left FFA processes them 
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more featurally [96]—reflecting brain maturation for 
holistic processing. In ASD. Similarity of FFA activation 
increased from childhood to adolescence, presumably 
reflecting maturation, but then decreased from adoles-
cence to adulthood. Recognition performance was more 
related to the similarity score in the left FFA—while in 
the right FFA in TD—which together suggests reduced 
FFA specialization for faces and object identification 
in ASD, and a more featural rather than configural pro-
cessing of these stimuli. Thus, fMRI studies complement 
those in EEG, by showing diminished FFA specialization 
for faces and objects and reduced integration of informa-
tion between distributed brain areas including bilateral 
FFA and the visual cortex.

Encoding and retrieval processes in episodic LTM
Studies focusing on encoding and retrieval processes in 
LTM explored either the functional connectivity during 
single item recognition (n = 2), the electrophysiological 
recollective old/new effect (n = 3), or associative pro-
cesses with fMRI (n = 4).

First, Noonan et  al. [85] conducted an fMRI source 
recognition paradigm in adolescents and adults using 
visually presented target words previously presented in a 
visual or auditory modality. Functional connectivity was 
analyzed between three seed regions of interest (left mid-
dle frontal, left superior parietal, and left middle occipital 
cortex) and the whole brain. The authors found, in spite 
of diminished performance in ASD, a large pattern of 
similar connectivity in ASD and TD groups and unex-
pectedly enhanced left fronto-parietal functional con-
nectivity in participants with ASD relative to TD. Close 
to these results, Chan et al. [86] investigated in children 
and adults, the coherence in the theta band—associ-
ated with WM and LTM memory processes—during the 
recognition phase of previously seen pictures. Antero-
posterior theta connectivity was greater in the left hemi-
sphere in ASD participants and in the right hemisphere 
for TD ones, with a negative correlation between coher-
ence and performance in the ASD group only, suggesting 
a threshold of connectivity beyond which performance 
decreased. Taken together, these two studies identi-
fied enhanced hemispheric left connectivity during epi-
sodic recognition in the ASD compared with the TD 
participants.

Using ERPs, Massand et  al. [87] and Massand and 
Bowler [88] conducted two successive studies focusing 
on the familiarity-related FN400 and recollection-related 
LPC potentials; overall memory performance was simi-
lar in ASD and TD groups in both studies. Massand et al. 
[87] employed a single-word recognition paradigm and 
found a parietal rather than anterior early FN400 old/
new effect (300–500  ms) in adults with ASD relative to 

TD, followed by a similar parietal LPC recollective pro-
cess (500–800 ms) in both groups. Massand and Bowler 
[88] used a single-picture recognition test followed by 
a phase where the color of the studied items had to be 
recalled. The authors found a posterior and attenuated 
FN400 old/new effect in the ASD group, occurring in a 
large time-window (300–650  ms), followed by a similar 
LPC old/new effect. More recently, Desaunay et  al. [79] 
used a visual associative recognition task in a study of 
adolescents with ASD. They found in conjunction with 
diminished performance in the ASD relative to the TD 
participants, a reduced FN400 amplitude followed by 
a LPC old/new effect presenting a parietal extension. 
These findings suggest that effortful retrieval of associa-
tive information compensates for the lower familiarity 
strength in the ASD participants. Overall, results from 
these three ERP studies indicate that recognition in ASD 
is qualitatively similar to that seen in TD and relies on 
the same dual-process, but may, however, differ quantita-
tively, with diminished familiarity-related potentials and 
preserved or even enhanced recollection-related poten-
tial in ASD.

Other fMRI studies explored associative memory in 
ASD, with a focus on hippocampus as a key structure 
underlying inter-item and item-context associations [97]. 
Gaigg et al. [89] evidenced a strong overlap of brain acti-
vations in adults with ASD and TD—including the left 
inferior frontal gyrus and left hippocampus—with simi-
lar signal change with the degree of relational encoding 
of word triplets accompanied by diminished subsequent 
recognition. Between-group difference was limited to 
absent or reduced signal change in prefrontal and pos-
terior hippocampal regions in the ASD group relative to 
TD, when contrasting the degree of awareness (familiar-
ity/recollection) for subsequent retrieval. Three recent 
studies have investigated associative memory with vis-
ual material. First, using a paradigm designed to assess 
memory precision, Cooper et  al. [90] identified similar 
levels of activity and functional connectivity among pre-
frontal, hippocampal and parietal areas during encoding, 
in adults with ASD and TD. By contrast, the recognition 
phase included several differences albeit close perfor-
mance, including reduced left prefrontal activity, sug-
gesting limited pre-retrieval search or post-retrieval 
monitoring, and reduced hippocampal connectivity 
with the fronto-parietal network. Second, Hogeveen 
et al. [91] investigated the associative encoding of paired 
pictures in adolescents and young adults and identi-
fied increased hippocampal activity along with dimin-
ished connectivity between the medial temporal lobe 
and postero-medial brain regions in the ASD relative to 
the TD group, alongside similar between-group perfor-
mance. This enhanced activity and reduced connectivity 
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were significantly inversely correlated, indicating that 
the decreased inter-regional connectivity in ASD would 
be efficiently compensated for by hippocampal hyper-
recruitment to support preserved associative memory. 
Fronto-hippocampal connectivity was also reduced in 
the ASD group compared with TD group. Third, Cook 
et  al. [92] performed an associative encoding task, ask-
ing participants from late childhood to adolescence to 
rate if object–scene pairs were congruent, incongruent, 
or intermediate. Participants with ASD and TD showed 
both a similar congruency rating during encoding, and 
the same facilitation for better subsequently recogniz-
ing congruent than incongruent pairs. In the TD group, 
encoding of subsequently recognized pairs was associ-
ated with greater activation of the bilateral medial pre-
frontal cortex for intermediate relative to congruent 
pairs, and with greater activation of the left medial tem-
poral lobe (including the hippocampus) for congruent 
relative to intermediate pairs. By contrast, activations of 
these two regions did not vary according to the level of 
congruency in the ASD group. As congruent informa-
tion encoding is progressively supported by the medial 
prefrontal cortex throughout development, the lack 
of modulation observed in the ASD group may reflect 
developmental immaturity; participant with ASD with 
greater behavioral flexibility had higher activations in 
bilateral, prevailing left medial prefrontal areas. Taken 
together, these fMRI results extend those in EEG, show-
ing that processing of associative information is quali-
tatively similar in ASD as in TD. Notably, hippocampal 
activation is similar or enhanced in ASD compared with 
TD; between-group differences mainly consist in reduced 
prefrontal activation and hippocampal connectivity.

Discussion
This systematic review highlights both great differences 
and similarities in memory functioning between ASD 
and TD, depending on the type of material (verbal, visu-
ospatial, faces), the type of memory (WM or episodic 
LTM), and the memory phase examined (mainly episodic 
encoding and retrieval). We attempt to relate these obser-
vations to the patterns of presence or absence of memory 
difficulties in ASD that have been identified in several 
meta-analyses. We also attempt to advance hypotheses 
based on neuroimaging findings relating to the specific 
characteristics of memory processes and representations 
in ASD.

Hemispheric asymmetries: stronger representation 
of verbal than visuospatial information
Meta-analyses about memory functioning in ASD sug-
gest lower WM and episodic LTM performances for visu-
ospatial than verbal material, and even larger memory 

difficulties for spatial memory and face recognition [5, 
44, 46].

For verbal material, atypical right-hemisphere activ-
ity was identified during WM tasks using letters [51] and 
LTM tasks using pseudowords [78]. Such findings sug-
gest that these kinds of stimuli orient participants with 
ASD toward a shallower processing because of their 
tendency to process verbal information in a less seman-
tic way than TD when not encouraged by the task [98]. 
Interestingly, encoding of visually presented words was 
associated with similar activations and enhanced connec-
tivity within the left hemisphere in ASD relative to TD 
[85, 89], which suggests that brain functioning in ASD 
is closer to TD when the memory task material typically 
triggers left-hemisphere processing. This could be sup-
ported by a tendency for the left hemisphere to be less 
atypically developed than the right, as highlighted by 
recent anatomical and functional connectivity studies in 
ASD [99–101]. This relative preservation of hemispheric 
left over right connectivity, in conjunction with the typi-
cal left-hemisphere specialization for semantic memory 
and language [102–104], could result in better memory 
for verbal over other types of material in ASD.

The autism-specific characteristics of visuospatial 
memory could also be related to the relative preservation 
of hemispheric left over right connectivity. Two studies 
found that the left FFA, when compared with right FFA, 
has a greater maturation [83] and a less reduced con-
nectivity with the visual cortex [84] in ASD. Two other 
studies reported bilateral, prevailing left medial prefron-
tal areas activations during picture encoding [92], and a 
leftward lateralization of functional connectivity during 
picture recognition [86]. Less atypical connectivity in the 
left than in the right hemisphere in ASD has been par-
ticularly demonstrated for intra-hemispheric visual-asso-
ciation fibers [105], especially for the inferior longitudinal 
fasciculus supporting visual processing [106]. This asym-
metry of hemispheric connectivity, in conjunction with 
both hemispheric visual specialization (i.e., local-featural 
and global-configural processing being supported by 
the left and right hemispheres, respectively [107]) and 
reduced interhemispheric transfer of information due to 
underconnectivity [99, 108], could lead to a more featural 
memory for visual items, less related to their long-term 
conceptual (semantic) representations. In this sense, 
hemispheric isolation with reduced local/global integra-
tion of visual information has been evidenced during a 
visual categorization task with EEG [109].

Functional imbalance between ventral and dorsal 
streams may also account for visuospatial difficulties in 
ASD [110, 111]. Indeed, some studies have identified sim-
ilar activations within the ventral stream in ASD as in TD 
while being diminished within the dorsal stream [52–54], 
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which corroborates the neuroimaging account of a spe-
cific dysfunction of the dorsal stream in visual perception 
in ASD [112]. The ventral stream is typically associated 
with object recognition, while the dorsal stream is most 
selective for spatial information and direction of move-
ment. Dorsal-to-ventral transfer of information continu-
ally adjusts ventral stream processing toward the most 
identification-relevant features of an object [113], facili-
tating face and object recognition [114]. Hence, atypi-
cal dorsal stream functioning, possibly resulting from 
decreased anatomical connectivity of the superior lon-
gitudinal fasciculus and uncinate fasciculus [112], which 
are among the most commonly reported association fib-
ers with altered white matter integrity in ASD [108], may 
reduce the processing of intra-item spatial information, 
also accounting for the weaker representation of visuos-
patial information in ASD. The maturation of the visual 
system in TD individuals associates prolonged gray mat-
ter development within the ventral stream, supporting 
its functional specialization, but later development of 
white matter connectivity within the dorsal stream, that 
improves higher-order visual perception over time [115]. 
Hence, atypical FFA specialization and dorsal stream 
activation identified in the studies reviewed above may 
reflect developmental differences between ASD and TD.

Similar atypical processes may also account for face 
memory difficulties in ASD, since face recognition typi-
cally implicates the configural processing of facial fea-
tures as in a spatial task [116]. In that sense, the typical 
rightward lateralization of the N170 potential is generally 
attenuated in ASD [117]—although this was not inves-
tigated in the studies reviewed above. A similar level of 
activation was observed in the FFA in ASD as in TD in 
some studies [55, 57, 84], which suggests that the pro-
cessing of basic facial features is preserved, but with 
a lower specialization for this kind of stimuli [84]. By 
contrast, a global decrease in FFA connectivity suggests 
that the typical integration of multimodal information in 
memory for faces is reduced in ASD, including percep-
tual visual information within the ventral stream [83, 84], 
and socio-emotional information [56, 57], along with a 
less automatic attention to these stimuli [55, 82].

Taken together, neuroimaging studies suggests that 
the processing of written words during memory tasks 
is relatively similar in ASD as in TD, while the concep-
tual processing of visuospatial information including 
faces is reduced. Words would be more associated with 
their long-term representation in the semantic memory 
system than visuospatial information including faces. 
Indeed, cognitive models suggest that efficiency of 
encoding, storage, and retrieval, for either WM or LTM, 
is related to the level of interaction between information 
processing and the semantic memory system [10, 118]. 

This causal link between reduced conceptual process-
ing of visuospatial information and weaker representa-
tion in memory has been demonstrated with EEG studies 
showing amplitude decrements on the early potentials 
associated with priming and next on the familiarity-
related potential [79–81]. Familiarity, a graded signal that 
increases with the number of intra-item informational 
links that match the specific face or object stored into 
the semantic memory system [119] is then subsequently 
reduced. This account is borne out by a behavioral study 
reporting that memory for semantically related pictures 
in ASD is enhanced by associating picture names to the 
pictures themselves, suggesting that words would foster 
item and inter-item conceptual processing, leading to 
better memory [120].

Antero‑posterior asymmetries: high‑fidelity WM 
representations with few top‑down processes
Most meta-analyses have reported a medium or medium 
to large effect sizes for ASD-TD differences in WM [5, 43, 
44, 121], indicating autism-related difficulties with active 
storage and manipulation of information.

Diminished load-dependent activation of prefrontal 
areas, without or with compensatory enhanced temporo-
parietal activation, was the most consistent finding in 
the WM studies in ASD reviewed here. It may implicate 
the reduced long-range functional connectivity in ASD, 
which results in a lower recruitment of anterior com-
pared with posterior brain areas [108, 122]. In that sense, 
one fMRI study reported a decrease in functional con-
nectivity among a large brain network [64], and several 
EEG/MEG studies reported a decrease in antero-poste-
rior alpha and theta coherence during the maintenance 
phase [58, 65, 67], in accordance with the long-range 
underconnectivity at lower frequency bands in ASD 
[100]. Alternatively, reduced load-dependent prefrontal 
areas, in conjunction with reduced parietal activation 
[52, 53, 61, 63], may implicate a general lack of modu-
lation with memory tasks demand in ASD [123], or the 
general idiosyncratic brain activation in ASD [124, 125], 
as shown in prefrontal areas [69].

The second main result was the similar or enhanced 
DMN deactivation in ASD compared with TD. Enhanced 
DMN deactivation found in adolescents with ASD [53, 
59] may correspond to a compensatory process for the 
under-recruitment of prefrontal areas during short-term 
maintenance, since DMN deactivation typically correlates 
negatively with fronto-parietal activation during WM [18] 
and predicts memory performance [126]. On the other 
hand, in the context of a developmental shift in TD from 
DMN hyper-connectivity in childhood to underconnec-
tivity in adolescence and adulthood, this increased DMN 
deactivation may result from the delayed maturation of 
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DMN in adolescents with ASD [127, 128]. This lack of 
coherence among results prevents any clear conclusions on 
the role of DMN functioning in WM in ASD.

Recent research in TD individuals suggests that high-
fidelity storage of WM representations strongly involves 
sensory cortices [129]. By contrast, as neurons in the pre-
frontal cortex have been shown to be involved in the cod-
ing for combinations of item- and task-related information 
[130], subsequent studies have convergingly concluded 
that persistent prefrontal activity during WM maintenance 
is associated not only with rehearsal, but also with selec-
tive task-related information, providing top-down control 
to select stimulus-specific activation in sensory regions 
[131]. WM tasks with low information processing demand 
would mainly rely on sensory cortices, while those requir-
ing higher abstraction or information processing would 
necessitate enhanced prefrontal top-down control. In addi-
tion, three of the reviewed WM studies reported dimin-
ished fronto-striatal connectivity in ASD relative to TD 
[58, 62, 64] that is typically associated with WM updating 
[132–134]. Information transferred from the striatum to 
the prefrontal cortex is related to the task set, controlling 
when representation within the prefrontal cortex should 
be maintained as opposed to updated, e.g., during manipu-
lation or to avoid interference. Hence, reduced prefrontal 
activation and striato-prefrontal connectivity in ASD may 
suggest diminished rehearsal and top-down processes, 
which in turn may impair active maintenance of informa-
tion and make it sensitive to decay. Representation of WM 
information in posterior temporo-parietal areas may be 
similar in ASD as in TD, but less specifically relevant to the 
task set, and more sensitive to interference.

Though typical WM development involves than same—
primarily fronto-parietal—brain areas over time, age-
related activations increase in frontal areas and decrease 
in posterior areas [135, 136]. To some extent, the WM net-
work in ASD may result from immature development due 
to altered integrity of frontal white mater or long-range 
fibers. On the one hand, anatomical connectivity in ASD is 
more reduced in regions that include frontal lobe pathways 
compared to other brain regions [137]. On the other hand, 
the superior longitudinal fasciculus and occipitofrontal 
fasciculi are two of the most commonly reported associa-
tion fibers with altered white matter integrity in ASD [108], 
while their preserved integrity correlates with WM perfor-
mance in TD [138].

Preserved posterior and hippocampal activity: weak 
context processing does not impair relational information 
in episodic LTM
A meta-analysis on memory in ASD reported a small 
to medium effect size in episodic LTM, suggesting dif-
ficulties at encoding and retrieval stages of memory 

processing [5]. Associative memory was not any more 
diminished than non-associative memory in subgroup 
comparisons. Most of the studies reviewed here reported 
asymmetries between left and right hemispheres, pos-
terior and anterior areas in ASD, when compared with 
TD. Although findings from episodic memory studies 
are heterogeneous, they are also consistent with these 
differences.

First, the results are consistent with the account of pre-
served memory functioning in ASD for tasks involving 
more left-hemisphere neurophysiological processes than 
right ones, such as verbal memory tasks [85, 89]—in line 
with the relative preservation of hemispheric left over 
right connectivity in ASD [99–101]. Besides, the left-
ward lateralization of medial prefrontal areas activations 
during picture encoding [92] and of electrophysiological 
theta coherence in ASD contrasting with rightward in 
TD, during picture recognition [86], contradicts the typi-
cal material-specific lateralization of brain activity (vis-
ual conceptual representations associated with the right 
hemisphere, [107]). There are two possible reasons for 
this atypical leftward lateralization of visual LTM. It may 
be because of the inclusion of young participants in these 
two studies [86, 92], leftward lateralization of connectiv-
ity during visual processing being particularly evident in 
younger ASD participants [139]. It could also result from 
greater white matter integrity of the left inferior longitu-
dinal fasciculus in ASD relative to the right [106].

Second, fMRI and EEG studies point toward a pre-
served or even enhanced functioning of the posterior 
structures linked to associative memory, especially the 
hippocampus. All the fMRI studies on LTM reviewed 
here that have focused on the hippocampus have iden-
tified its similar [82, 89, 90] or even increased [91] acti-
vation in ASD compared with TD. This result could be 
related to the increase in hippocampal volume identi-
fied in childhood [140] and adolescence in ASD [141]. 
In addition, ERP recognition studies have consistently 
showed diminished or atypically located early mid-
central (FN400) potentials in ASD relative to TD, in 
conjunction with similar [87, 88] or even wider [79] 
late positive parietal (LPC) potential. This electro-
physiological pattern may indicate a greater involve-
ment of recollection over familiarity processes, which, 
however, contradicts behavioral observations of lower 
recollective awareness in ASD [38–40], though dis-
crepant results [42]. Instead, as the LPC potential 
typically indexes associative recognition [26–28] and 
involves the hippocampus [142], it may rather indicate 
a greater involvement of associative processes. These 
ERP results may correspond to an immature develop-
ment of memory processes, as observed in TD children 
where episodic recognition is only associated with the 
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LPC potential, stable with age, while the FN400 poten-
tial increases to adulthood [28, 143], possibly implicat-
ing long-range underconnectivity in ASD that impacts 
mostly frontal connectivity and preserves cognitive 
processes subserved by posterior brain areas [122]. 
Given the binding properties of the hippocampus in 
LTM, these fMRI and ERP results suggest a greater 
involvement of relational representations in episodic 
memory in ASD. This could explain the greater reli-
ance on detailed (verbatim) over global and conceptual 
(gist-based) memory representations in ASD [144], in 
contrast to a developmental shift improving gist-based 
strategies observed in TD individuals across the lifes-
pan [145]. Moreover, a diminished prefrontal activation 
or prefrontal-hippocampal connectivity co-occurred 
with this preserved hippocampal activation during rela-
tional encoding [82, 91] or retrieval [90] in fMRI stud-
ies. Most recent theories in TD suggest complementary 
learning systems, where the hippocampus encodes 
moment-to-moment changes in incoming inputs, while 
the prefrontal cortex integrates over time their simi-
larities into abstract categories; the prefrontal cortex 
enables a context-guided encoding, via a top-down 
selection of relevant information by the hippocampus 
[146, 147]. This process could be reduced in ASD, as 
evidenced by Cook et al. [92], showing no modulation 
between medial prefrontal areas and medial tempo-
ral lobe activations according to the degree of object–
scene congruency at encoding, contrary to the TD 
control group. Hence, reduced prefrontal–hippocampal 
connectivity may explain the difficulties of individuals 
with ASD in identifying similarities between related 
information [33, 34], and the greater difficulties with 
more complex stimuli such as sentences or stories [45]. 
It may also explain the normalization of memory per-
formance in  situations providing support for the pro-
cessing of relational information  [33, 36, 37].

Third, two studies reported greater differences between 
ASD and TD occurring during the recognition than 
encoding phase. Lynn et  al. [83] described a greater 
reduction in connectivity between the right FFA and the 
visual cortex during face recognition than during encod-
ing, and Cooper et  al. [90] reported diminished frontal 
activation and connectivity between the hippocampus 
and fronto-parietal network during visual associative rec-
ognition in ASD individuals. During encoding, this last 
pattern was similar in TD participants. Moreover, while 
encoding and retrieval in episodic memory typically 
share common processes [148], reduced post-retrieval 
verification processes may further hamper recognition, 
as identified by two ERP studies showing diminished 
activity or non-specific latency of the related late frontal 
potential [87, 88].

Synthesis: specific memory characteristics in ASD linked 
functional brain asymmetries in the three anatomical 
planes
The studies reviewed here highlight functional brain 
asymmetries between ASD and TD participants during 
memory tasks in three anatomical planes. These asym-
metries consist in greater reliance on the left hemi-
sphere than the right, on posterior structures including 
the hippocampus rather than anterior brain regions, 
and on ventral occipito-temporal rather than dorsal 
occipito-parietal stream. We suggest that interactions 
between location and severity of these functional alter-
ations with specialization of brain areas are linked to 
in atypical memory functioning in ASD. Although this 
functioning relies on the same basic processes as are 
used in TD individuals, they are employed in a different 
way. Based on the studies reviewed here, we propose a 
neuroimaging model of memory functioning in ASD, 
focusing on these functional asymmetries with assump-
tions about the autism-specific characteristics of mem-
ory processes and representations (Fig. 2).

The first asymmetry may emerge from the relative 
preservation of left over right intra-hemispheric con-
nectivity, identified from early childhood [149] through 
to later development in ASD [99–101], and may con-
tribute to the greater verbal over visuospatial memory 
in ASD highlighted in meta-analyses. This may result 
in a processing of verbal information in ASD close to 
that in TD, with a preserved memory representation 
of these stimuli supported by the semantic memory 
system, contrasting with reduced configural process-
ing of visuospatial information including faces in ASD, 
involving more featurally-based representation, less 
associated with the semantic memory system.

The second asymmetry may result from both the 
overall long-range underconnectivity in ASD that 
begins from early development and impacts mostly 
frontal connectivity [100, 108, 122, 137, 150] and the 
greater hippocampal volume in ASD compared with 
TD [140, 141] and may also interfere with memory pro-
cesses, particularly those involved in WM, as also high-
lighted by the meta-analyses. It may impair the typical 
age-dependent reliance of both WM [135, 136] and epi-
sodic LTM [151] on frontal areas, attenuating rehearsal 
and top-down processes that are critical for WM main-
tenance and the context-guided encoding pre- and 
post-retrieval processes in LTM, also supporting high-
fidelity WM representations and rich relational infor-
mation in episodic LTM.

The third asymmetry, based on only few results, may be 
related to dorsal stream dysfunction in ASD also impli-
cating underconnectivity [108, 112] and may further 
explain the greater difficulties in memory tasks requiring 
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spatial processing of information such as memory for 
faces.

Intriguingly, within these asymmetries, the brain areas 
with relatively preserved activity and connectivity in 
ASD when compared to TD, are those where in humans 
white matter develops first, during the early phases of 
life. Structural neuroimaging studies of white matter 
in TD have shown a leftward asymmetry in fetuses and 
neonates [152], both posterior-to-anterior and central-
to-peripheral direction of maturation during the first few 
years [153], and earlier maturation in the ventral stream 
compared with the dorsal stream during childhood [115], 
which questions the link in ASD between atypical early 
brain development and later memory functioning.

Limitations
This review has several limitations. First, although all but 
one of the reviewed studies reached a high or very high 
quality on the Kmet score, only half achieved the maxi-
mum quality for the appropriate sample size. Hence, a low 
number of participants in reviewed studies may limit the 
robustness of their brain imaging results. Second, diag-
nostic criteria and psychometric data for participants with 

ASD were heterogeneous across studies, which may have 
induced variability in neuroimaging results. Indeed, the 
IQ of individuals with ASD is a significant factor influenc-
ing differences in memory performance between groups 
with ASD and TD [5], and it also shows a substantial vari-
ability in their development into adulthood [154]. The age 
ranges of participants were sometimes wide, both within 
and between studies. In addition, no neuroimaging study of 
memory has been conducted in individuals with ASD and 
language impairment (ASD-LI), although behavioral stud-
ies have evidenced a specific functioning of their declarative 
memory [155]. Third, while the methodology of the WM 
studies was relatively homogeneous, based on N-back tasks, 
the methodology of LTM studies was heterogeneous, which 
made it more difficult to identify a clear pattern of results. 
In both cases, there was little use of verbal memory tests, 
which is a weakness of neuroimaging memory studies in 
ASD, especially given that academic learning relies in sub-
stantial part on this type of memory. Moreover, the studies 
reviewed here mainly used recognition tasks, on which indi-
viduals with ASD perform similarly to those with TD [5], 
while free recall tasks, for which ASD individuals experience 
more difficulty, have barely been explored in neuroimaging. 

Fig. 2 A summary of brain functional asymmetries during memory processing in ASD. Brain functional asymmetries during memory processing in 
ASD are dependent to the material (top right part of the panel): a relative preservation of left over right-hemisphere activity and connectivity 
for verbal and visuospatial material and a greater impairment of dorsal streams than of ventral ones, for visuospatial material. Apart from these 
material-dependent effects, functional asymmetries were generally found during working (WM) maintenance and episodic recognition (top 
left part of the panel): a relative preservation of posterior activity—including a full hippocampal one—and connectivity over frontal activity and 
antero-posterior long-range connectivity. Interactions between the location of these functional alterations with specialization of brain areas 
may result in atypical WM (diminished rehearsal process and top-down control, lowered task-set relevance) and episodic memory (reduced 
context-guided encoding, pre- and post-retrieval processes; high episodic processing of relational information, with lowered general context 
processing), and underpin the cognitive pattern of memory preservation and difficulties identified in meta-analyses in ASD (lower part of the 
panel), including impaired—especially visuospatial—WM and episodic memory for complex stimuli, including face recognition
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The combined variability of reviewed studies regarding the 
age of participants, the memory tasks used, the stage of the 
memory process investigated, as well as the nature of the 
neural signal acquired, made it not possible to produce a 
quantitative (meta-analytic) confirmation of the synthesis. 
Fourth, the proposed neuroimaging model is based on func-
tional differences between ASD and TD, including brain 
activity and connectivity, that presumably are influenced 
by structural differences in gray and white matter. How-
ever, none of reviewed studies included structural measures, 
making it unclear to what extent structural abnormalities 
account for the functional differences between ASD and 
TD groups. Finally, the interpretations of the differences 
between ASD and TD concerning memory processes and 
representations are based on the presumption of identical 
brain specialization, which remains difficult to confirm.

Conclusions and future directions
On the basis of the studies reviewed here, we proposed 
a neuroimaging model of memory in ASD based on 

functional asymmetries (i.e., of activity and connectivity) 
in three anatomical planes. We related these asymmetries 
to anatomical and structural connectivity alterations 
commonly identified in ASD. This neuroimaging model 
helps explain the pattern of behavioral results depending 
on material or type of memory in several meta-analyses. 
Although this model has the potential to unify widely dis-
parate results, it also faces several limitations, including 
lack of quantitative (meta-analytic) confirmation. Future 
research could confirm or improve this model, by com-
bining measures of structural and functional connectivity 
in same memory paradigms and by varying type of mem-
ory, type of material, and level of complexity of informa-
tion in same participants.

Appendix
Quality assessment of included WM and episodic LTM 
studies (Kmet, Lee, & Cook, 2004, checklist). Scores: 
2 = Yes, 1 = Partial, 0 = No, N/A = not applicable.

Kmet, Lee, & 
Cook (2004) 
checklist for 
assessing the 
quality of 
quantitative 
studies

Audrain 
et al. 
[67]

Barendse 
et al. [68]

Braden 
et al. 
[64]

Chan 
et al. 
[86]

Chantiluke 
et al. [59]

Churches 
et al. [81]

Cook 
et al. 
[92]

Cooper 
et al. 
[90]

Desaunay 
et al., [79]

Gaigg, 
et al. 
[89]

Greimel 
et al., 
[82]

Gunji 
et al. 
[80]

1. Question/
objective 
sufficiently 
described?

2 2 2 2 2 2 2 2 2 2 2 2

2. Study 
design 
evident and 
appropriate?

2 2 2 2 2 2 2 2 2 2 2 2

3. Method of 
subject/com-
parison group 
selection or 
source of 
information/
input variables 
described and 
appropriate?

1 2 2 2 2 2 2 2 2 2 2 2

4. Subject 
(and compari-
son group, if 
applicable) 
characteristics 
sufficiently 
described?

2 2 2 2 2 1 2 2 2 2 2 1

5. If inter-
ventional 
and random 
allocation was 
possible, was 
it described?

N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N/A
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Kmet, Lee, & 
Cook (2004) 
checklist for 
assessing the 
quality of 
quantitative 
studies

Audrain 
et al. 
[67]

Barendse 
et al. [68]

Braden 
et al. 
[64]

Chan 
et al. 
[86]

Chantiluke 
et al. [59]

Churches 
et al. [81]

Cook 
et al. 
[92]

Cooper 
et al. 
[90]

Desaunay 
et al., [79]

Gaigg, 
et al. 
[89]

Greimel 
et al., 
[82]

Gunji 
et al. 
[80]

6. If interven-
tional and 
blinding of 
investigators 
was pos-
sible, was it 
reported?

N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A N/A

7. If interven-
tional and 
blinding of 
subjects was 
possible, was 
it reported?

N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A N/A

8. Outcome 
and (if 
applicable) 
exposure 
measure(s) 
well defined 
and robust 
to measure-
ment/mis-
classification 
bias? Means 
of assessment 
reported?

2 2 2 2 2 2 2 2 2 2 2 2

9. Sample size 
appropriate?

2 1 1 2 1 1 1 2 2 1 1 0

10. Analytic 
methods 
described/
justified and 
appropriate?

2 2 2 2 2 2 2 2 2 2 2 2

11. Some 
estimate of 
variance is 
reported for 
the main 
results?

2 2 2 2 2 2 2 2 2 2 2 2

12. Controlled 
for confound-
ing?

2 2 2 2 2 2 2 2 2 2 2 2

13. Results 
reported in 
sufficient 
detail?

2 2 2 2 2 2 2 2 2 2 2 2

14. Conclu-
sions sup-
ported by the 
results?

2 2 2 2 2 2 2 2 2 2 2 2

Total score 21 21 21 22 25 20 21 22 22 21 21 19

Percentage 95% 95% 95% 100% 89% 91% 95% 100% 100% 95% 95% 86%
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Kmet, Lee, & 
Cook (2004) 
checklist for 
assessing the 
quality of 
quantitative 
studies

Hawco 
et al. 
[69]

Herrington 
et al. [55]

Hogeveen 
et al. [91]

Kleinhans 
et al. [57]

Koshino 
et al. [51]

Koshino 
et al. [56]

Larrain‑
Valenzuela 
et al. [66]

Luna 
et al. 
[60]

Lynn 
et al. 
[83]

Massand 
et al. [87]

Massand 
& Bowler 
[88]

1. Question/
objective 
sufficiently 
described?

2 2 2 2 2 2 2 2 2 2 2

2. Study 
design evident 
and appropri-
ate?

2 2 2 2 2 2 2 2 2 2 2

3. Method of 
subject/com-
parison group 
selection or 
source of 
information/
input variables 
described and 
appropriate?

1 2 2 2 1 1 2 1 1 1 2

4. Subject (and 
comparison 
group, if 
applicable) 
characteristics 
sufficiently 
described?

2 2 2 2 2 2 2 1 2 1 2

5. If inter-
ventional 
and random 
allocation was 
possible, was it 
described?

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

6. If interven-
tional and 
blinding of 
investigators 
was pos-
sible, was it 
reported?

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

7. If interven-
tional and 
blinding of 
subjects was 
possible, was it 
reported?

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

8. Outcome 
and (if applica-
ble) exposure 
measure(s) 
well defined 
and robust to 
measurement/
misclassifica-
tion bias? 
Means of 
assessment 
reported?

2 2 2 2 2 2 2 2 2 2 2

9. Sample size 
appropriate?

2 1 2 2 1 1 2 1 2 1 1
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Kmet, Lee, & 
Cook (2004) 
checklist for 
assessing the 
quality of 
quantitative 
studies

Hawco 
et al. 
[69]

Herrington 
et al. [55]

Hogeveen 
et al. [91]

Kleinhans 
et al. [57]

Koshino 
et al. [51]

Koshino 
et al. [56]

Larrain‑
Valenzuela 
et al. [66]

Luna 
et al. 
[60]

Lynn 
et al. 
[83]

Massand 
et al. [87]

Massand 
& Bowler 
[88]

10. Analytic 
methods 
described/
justified and 
appropriate?

2 2 2 2 2 2 2 2 2 2 2

11. Some 
estimate of 
variance is 
reported for 
the main 
results?

2 2 2 1 2 2 2 2 2 2 2

12. Controlled 
for confound-
ing?

2 2 2 2 2 2 2 2 2 2 2

13. Results 
reported in 
sufficient 
detail?

2 2 2 2 2 2 2 2 2 2 2

14. Conclu-
sions sup-
ported by the 
results?

2 2 2 2 2 2 2 2 2 2 1

Total score 21 21 22 21 20 20 22 19 21 19 20

Percentage 95% 95% 100% 95% 91% 91% 100% 86% 95% 86% 91%

Kmet, Lee, & 
Cook (2004) 
checklist for 
assessing the 
quality of 
quantitative 
studies

Neumann 
et al. [78]

Noonan, 
Haist, & 
Müller [85]

O’Hearn 
et al. [84]

Rahko 
et al. 
[63]

Silk 
et al. 
[62]

Urbain, 
Pang, & 
Taylor 
[54]

Urbain 
et al. 
[58]

Vogan 
et al. 
[52]

Vogan 
et al. 
[61]

Vogan 
et al. 
[53]

Yuk 
et al. 
[65]

1. Question/
objective 
sufficiently 
described?

2 2 2 2 2 2 2 2 2 2 2

2. Study design 
evident and 
appropriate?

2 2 2 2 2 2 2 2 2 2 2

3. Method of 
subject/compar-
ison group selec-
tion or source 
of information/
input variables 
described and 
appropriate?

2 2 1 2 2 1 1 1 1 1 1

4. Subject (and 
comparison 
group, if applica-
ble) characteris-
tics sufficiently 
described?

2 2 2 1 2 2 2 2 2 2 2
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Kmet, Lee, & 
Cook (2004) 
checklist for 
assessing the 
quality of 
quantitative 
studies

Neumann 
et al. [78]

Noonan, 
Haist, & 
Müller [85]

O’Hearn 
et al. [84]

Rahko 
et al. 
[63]

Silk 
et al. 
[62]

Urbain, 
Pang, & 
Taylor 
[54]

Urbain 
et al. 
[58]

Vogan 
et al. 
[52]

Vogan 
et al. 
[61]

Vogan 
et al. 
[53]

Yuk 
et al. 
[65]

5. If interven-
tional and ran-
dom allocation 
was possible, 
was it described?

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

6. If interven-
tional and 
blinding of 
investigators was 
possible, was it 
reported?

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

7. If interven-
tional and blind-
ing of subjects 
was possible, 
was it reported?

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

8. Outcome and 
(if applicable) 
exposure 
measure(s) 
well defined 
and robust to 
measurement/
misclassification 
bias? Means 
of assessment 
reported?

2 2 2 2 2 2 2 2 2 2 2

9. Sample size 
appropriate?

0 1 2 2 0 2 2 2 2 2 2

10. Analytic 
methods 
described/
justified and 
appropriate?

2 2 2 2 2 2 2 2 2 2 2

11. Some esti-
mate of variance 
is reported for 
the main results?

2 2 2 1 1 2 2 2 2 2 2

12. Controlled 
for confounding?

2 2 2 2 1 2 2 2 2 2 2

13. Results 
reported in suf-
ficient detail?

2 2 2 2 1 2 2 2 2 2 2

14. Conclusions 
supported by 
the results?

2 2 2 2 2 2 2 2 2 2 2

Total score 20 21 21 20 17 21 21 21 21 21 21

Percentage 91% 95% 95% 91% 77% 95% 95% 95% 95% 95% 95%



Page 29 of 32Desaunay et al. Molecular Autism            (2023) 14:2  

Abbreviations
ASD   Autism spectrum disorder
DMN   Default-mode network
EEG/MEG   Electro-/magnetoencephalography
ERP   Event-related potential
FFA   Fusiform face areas
fMRI   Functional magnetic resonance imaging
FN400 potential  Frontal, negative, around 400 ms
LTM   Long-term memory
LPC potential  Late positive (or parietal) component
TD   Typical development
WM   Working memory
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