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Abstract

The long-described atypicalities of memory functioning experienced by people with autism have major implica-
tions for daily living, academic learning, as well as cognitive remediation. Though behavioral studies have identified a
robust profile of memory strengths and weaknesses in autism spectrum disorder (ASD), few works have attempted to
establish a synthesis concerning their neural bases. In this systematic review of functional neuroimaging studies, we
highlight functional brain asymmetries in three anatomical planes during memory processing between individuals
with ASD and typical development. These asymmetries consist of greater activity of the left hemisphere than the right
in ASD participants, of posterior brain regions—including hippocampus—rather than anterior ones, and presumably
of the ventral (occipito-temporal) streams rather than the dorsal (occipito-parietal) ones. These functional alterations
may be linked to atypical memory processes in ASD, including the pre-eminence of verbal over spatial information,
impaired active maintenance in working memory, and preserved relational memory despite poor context processing
in episodic memory.

Highlights

« Brain correlates of memory processes in autism spectrum disorder display functional asymmetries.
+ Greater reliance on left than right-hemisphere functioning.

+ Greater reliance on posterior than anterior brain functioning.

+ Greater reliance on ventral stream than dorsal stream functioning.

+ These functional asymmetries may account for memory atypicalities in ASD.
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Introduction

Autism spectrum disorder (ASD) is a lifelong neurode-
velopmental disorder comprising difficulties in social
communication and interaction, restricted or repetitive
behaviors or interests, alongside sensory characteristics.
Autism-specific characteristics in the cognitive and sen-
sory domains are thought to result in atypical memory
development in this population, which has been noted
since the first clinical descriptions of the disorder [1-3]. In
addition, memory abilities help supporting cognitive reha-
bilitation in ASD [4]. Understanding memory is therefore
of significant interest in ASD, and in this sense, several
cognitive models have been developed over time [5]. This
contrasts with the lack of any systematic neural model,
despite a growing number of publications in this area.

Memory encompasses a complex set of cognitive func-
tions and multicomponent systems. Short-term memory
stores a limited quantity of information [6], and this has
been further extended by Baddeley’s model of working
memory (WM) [7], which emphasizes the manipulation of
information during cognitive tasks and encompasses two
modality-specific short-term stores (visuospatial sketchpad
and phonological loop) that depend on a central execu-
tive. WM involves several cognitive processes: (1) selective
attention to perceptual information and activation of
semantic representations, during encoding; (2) sustained
attention, rehearsal, and inhibition of task-irrelevant infor-
mation, during maintenance; and (3) selective attention
and pattern completion, during retrieval [8]. By contrast,
long-term memory (LTM) contains unlimited quantities
of information held for long durations and includes two
subsystems, namely the semantic memory that contains
general knowledge and is associated with noetic awareness
and the episodic memory. Most studies conducted in ASD
have focused on episodic LTM, which consists of specific
memories of personally experienced events, situated in the
temporal and spatial contexts of their acquisition. Episodic
LTM is associated with autonoetic awareness and recollec-
tion. Episodic LTM is associated with autonoetic awareness
and recollection. During encoding and retrieval, episodic
LTM involves similar cognitive processes to those seen in
WM, with the difference between the two types of memory
being found mainly in the way information is stored [9, 10].
In WM, storage is kept active by means of rehearsal, while
storage is supported by the semantic memory system in
episodic LTM [11].

Neuroimaging studies in memory research either can
evaluate brain activity during memory tasks compared
with control conditions, or can explore functional con-
nectivity, i.e., the temporal correlations between spatially
remote neurophysiological events. The imaging methods
used are functional magnetic resonance imaging (fMRI)
and electro-/magnetoencephalography (EEG/MEG): fMRI
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measures the BOLD (blood-oxygen-level-dependent) sig-
nal of cortical and subcortical regions with high spatial
precision and EEG/MEG measures electrical activity near
the cortical surface from pyramidal neurons firing simul-
taneously with high temporal and spectral resolutions [12].

For WM, neuroimaging studies in typical development
(TD) have evidenced a persistent activation and func-
tional connectivity in the absence of stimuli, between
fronto-parietal and posterior areas [8]. Activation of the
prefrontal cortex and particularly the dorsolateral part
have been associated with rehearsal and manipulation of
information, and activity in parietal areas with attentional
processes [13]. Activation in posterior areas has been
associated with WM storage, especially within the same
specialized perceptual areas that are recruited during the
processing of low-level features of items at encoding, e.g.,
early visual cortex for visual information [14], left parietal
areas for verbal ones [15], which was theorized as the sen-
sory-recruitment hypothesis [16, 17]. Moreover, activation
in the fronto-parietal network is coupled with deactiva-
tion of the default-mode network (DMN) that comprises
bilateral cortical areas activated during resting state and
deactivated during any task, located in medial and lateral
parietal, medial prefrontal, and medial and lateral tempo-
ral cortices [18]. Electrophysiological studies provide evi-
dence that high-frequency gamma oscillations code for
items, while long-range low-frequency theta oscillations
are associated with the temporal organization of WM
items during maintenance [19, 20]. Gamma cycles are
nested within theta cycles during short-term maintenance
(nested cycles model) [21], with the ratio of theta to gamma
cycle length being predictive of WM capacity [22]. Low-
frequency alpha oscillations have been associated with
local (occipital) inhibition of task-irrelevant information
[20] and also in WM maintenance at long-range scale [23].

Episodic LTM, by contrast, relies on the storage of infor-
mation associated in TD with the medial temporal lobes
and other widely distributed cortical areas depending
on memory tasks. Based on fMRI data, the binding item-
context account [24] posits that item and context repre-
sentations are, respectively, supported by the perirhinal
and parahippocampal cortices and associated in memory
by the hippocampus, while the prefrontal cortex mainly
dorsolateral part enables information processing during
encoding and retrieval. Linking cognitive and neuroana-
tomical models, the predictive interactive multiple memory
systems framework [25] emphasizes the functional connec-
tivity between the hippocampus (associated with episodic
memory), the perirhinal cortex (associated with semantic
memory), and sensory cortices (associated with percep-
tual representation systems), during memory stages. Elec-
trophysiological studies of episodic LTM mainly focus on
recognition, allowing an analysis of memory processes.



Desaunay et al. Molecular Autism (2023) 14:2

Event-related potential (ERP) studies describe old/new
effects (consisting in a greater positivity for correctly rec-
ognized old items over correctly rejected new items) occur-
ring on: early potentials (0—300 ms) related to priming, the
EN400 potential (frontal, negative, around 300-500 ms)
indexing familiarity, the LPC (late positive—or parietal—
component, around 500-700 ms) indexing recollection,
then late frontal negativity (indexing post-retrieval moni-
toring) [26—28]. These familiarity-related FN400 and rec-
ollection-related LPC potentials have been, respectively,
associated with the semantic and episodic memory systems
in the dual-process theory of recognition [29].

Behavioral studies in ASD primarily focus on episodic
LTM, providing neuroanatomical hypotheses that have
been assessed only to a limited extent. Greater difficul-
ties have been reported for complex information process-
ing, particularly in the visual modality [30, 31], suggesting
reduced connectivity between frontal associative and pos-
terior sensory areas [32]. Individuals with ASD generally
draw less benefit from the categorical-semantic aspects
of the to-be-remembered information [33, 34], suggesting
diminished detection of higher-order similarities between
related items of information, which possibly implicate
frontal and medial temporal lobes [35]. It contrasts with
typical levels of memory performance in situations that
provide support for the processing of relational informa-
tion (the task support hypothesis) [33, 36, 37]. Preserved
item-specific and context-independent memory, alongside
with greater difficulties in the recollection over familiarity
process [38—40], suggested dysfunction of the hippocam-
pus that supports binding [37, 41]. It has been more
recently challenged by findings of a greater visual memory
both for items and associations in ASD when supported by
recollection than familiarity [42].

Recently, several meta-analyses have been conducted,
highlighting a specific pattern in declarative memory
in ASD. Two specific meta-analyses have been real-
ized on WM [43, 44], one included WM and episodic
LTM domains [5], and the two most recent focused on
episodic LTM [45] and face recognition [46]. Meta-
analyses on WM have, respectively, identified an
overall medium effect size with greater difficulties for
visuospatial WM compared with verbal WM [44], and
medium to large effect sizes for both verbal WM and
visuospatial WM [43]. One meta-analysis reported
an overall medium effect size for WM, homogeneous
whatever the type of material either verbal, visual, or
spatial (with, however, a tendency for medium to large
for the latter), along with overall low to medium effect
size for episodic LTM, with a small effect size only for
verbal LTM, a medium one for visual LTM (inconclu-
sive results for visuospatial LTM), and a similar decre-
ment for associative and non-associative memory [5].
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Other meta-analyses on episodic LTM have, respec-
tively, reported an overall low to medium effect size,
with greater difficulties in ASD for complex stimuli
(sentences and stories), compared with simple stimuli
(words and pictures) [45], and large deficits for both
face identity recognition and discrimination [46].
Hence, these results point toward greater difficulties
for visuospatial material over verbal material, which are
even larger for faces, and greater still for WM over epi-
sodic LTM.

In contrast to consistent cognitive models and behav-
ioral meta-analyses of memory in ASD, reviews and syn-
theses are lacking for neuroimaging studies. Only two
preliminary reviews have been conducted, concluding
that there was reduced functional connectivity in WM
in adolescents with ASD [47], and prefrontal cortex dys-
function as a general factor for episodic LTM difficulties
in ASD [48]. To address this gap, we conducted a review
of neuroimaging studies on memory in ASD, including
both fMRI and electrophysiological studies. We focused
on WM and episodic LTM studies that represent the
core of studies on memory in ASD, distinguishing verbal
material, and visuospatial material, including faces.

Methods

This systematic review has adopted the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses
guidelines [49]. The protocol of this review was prospec-
tively registered in the International Prospective Register
of Systematic Reviews (PROSPERO; CRD42020203766).

Selection criteria
We selected studies with the following inclusion crite-
ria: (1) studies comparing individuals with autism spec-
trum disorder (ASD) and those with TD, regardless of
age, published in English and in peer-reviewed journals;
(2) participants with autism presenting one of the spec-
trum phenotypes (i.e., autism, autism spectrum disorder,
autistic disorder, Asperger syndrome, pervasive devel-
opmental disorders not otherwise specified); and (3)
neuroimaging studies focusing on working- or episodic
memory, using electrophysiological -EEG or MEG—or
fMRI methods, with activation or connectivity measures.
Exclusion criteria were as follows: (1) animal research
studies; (2) participants presenting autism associated
with a known medical or genetic condition; (3) studied
memories not being presented during the task, such as
autobiographical memories; (4) studies on learning; (5)
non-declarative memory tasks; and 6) neuroimaging not
being performed during the memory task (brain/cogni-
tion covariance analyses).
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Information sources and search strategies
A literature search was conducted on PubMed and Web
of Science databases on August 21, 2020, and updated on
June 1, 2022, with no oldest limit date. Keywords used
were both MeSH (Medical Subject Heading) and text
word terms combined with Boolean terms: “(EEG OR
MEG OR electroencephalography OR magnetoencepha-
lography OR electrophysiology OR MRI OR Magnetic
Resonance Imaging OR neuroimaging) AND (autism OR
Asperger syndrome OR autistic OR pervasive develop-
mental disorder) AND memory” This led to 459 hits on
PubMed and 759 hits on Web of Science (Fig. 1).
Limitation of bias was done at two levels. First, the
first author (PD) screened independently all titles and
abstracts, leading to 69 full-text articles assessed for
eligibility. Inclusion of eligible studies was evaluated by
two authors (PD and BQG). Data extraction of included
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studies was conducted by the first author (PD), and a
verification of extracted data was subsequently real-
ized by two authors (PD and BG). A total of 35 stud-
ies were excluded for following reasons: no memory
task (n=17); memory task other than specified (e.g.,
learning) (n=7); neuroimaging not being performed
during the memory task (n=4); other neuroimaging
techniques than EEG, MEG or fMRI (e.g., tomography,
functional near-infrared spectroscopy) (n=4); absence
of control group, or control group being not neurotypi-
cal (n=2); and heterogeneous group of patients with
ASD or other neurodevelopmental disorders (n=1).

Finally, 34 articles were retained for synthesis, 19
focusing on WM, and 15 focusing on episodic LTM.
Risk of bias analyses was also performed with regard to
the quality of included studies.

807 records excluded

35 full-text articles excluded:

- notamemory task= 17

- memory task other than specified= 7

- neuroimaging not being performed
during the memory task= 4

- other neuroimaging techniques than

EEG, MEG, or fMRI= 4

- no control group, or control group
being not neurotypical= 2

C
-.g 1218 records identified through database searching on June 1, 2022:
gfz’ Pubmed: 459
é Web of Science: 759
876 records after duplicates removed
o0
< 876 records screened
&
o
3]
wv
69 full-text articles assessed for eligibility:
Pubmed: 45
Web of Science : 24
Py
.-?_)
o
w
o . .
] 34 studies included
e}
2 in qualitative synthesis

- heterogeneous group of patients with
ASD or other neurodevelopmental
disorders= 1

Fig. 1 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart describing the studies selection process
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Second, at the outcome level, two authors (PD and BG)
independently evaluated the quality of included stud-
ies, using the Standard Quality Assessment Criteria for
Evaluating Primary Research Papers [50]. The checklist
was used in its original form, and all included studies
were scored (2= Yes, 1 =Partial, 0=No, N/A =not appli-
cable) with complete agreement between both authors.
Assessment total scores were converted to a percentage
score that ranged from 77 to 100%. A total of 33 studies
met criteria for high-quality studies (Kmet score >80%),
among which 29 met criteria for very high quality (Kmet
score >90%); one study was evaluated of moderate quality
(Kmet score: 77%). All studies were considered of suffi-
cient quality (see Appendix).

Results

Studies on working memory

Nineteen WM studies were included [51-69] (Table 1),
16 of which used updating “N-back” tasks. It should be
noted that N-back tasks may not fully reflect the manip-
ulation of information by the central executive as theo-
rized by the Baddeley model of WM [70], but rather the
continuous updating of to-be-memorized information,
which corresponds to storage without manipulation of
information [71-73]. Included studies were informative
either on the processing of to-be-memorized informa-
tion only (n=3), or on maintenance and manipulation of
information only (n=12), or both (n=4), using fMRI for
15 studies, and electrophysiology for the other four ones.

Effects of the type of material on neuroimaging results

Only one study focused on WM processing of visu-
ally presented verbal information, using letters. Other
reviewed studies concerned mostly visuospatial informa-
tion (e.g., colored figures, abstract images, or stimulus
location), including faces. Most of these studies reported
similar memory performance (thereafter, “performance”)
between ASD and TD participants, with different pat-
terns of brain activation and connectivity.

Using an fMRI letter N-back task, Koshino et al. [51]
identified in the 2-back condition, a pattern of activation
and connectivity being lateralized right or bilateral poste-
rior in adults with ASD relative to TD, with reduced acti-
vations in left fronto-parietal areas, also in participants
with ASD relative to TD. These results suggest a more
visual graphical, i.e., less semantic, processing of letters,
in spite of similar between-group performance.

Other studies used visuospatial material. Vogan et al.
[52] conducted an fMRI 1-back color matching task in
preadolescent children and observed that when the num-
ber of different colors constituting a figure increased,
ASD relative to TD children showed diminished per-
formance and diminished parietal activation while
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showing similar activations in bilateral occipital areas
and fusiform gyri. In a 2-year follow-up study, Vogan
et al. [53] observed in the same participants, a greater
load-dependent activation in parietal lobes only in TD
controls. The minimal changes they observed in the
ASD group were limited to occipito-temporal areas, with
diminished performance on the higher load conditions.
Results from these two studies suggest preserved activa-
tion within the visual occipito-temporal areas associated
with the “ventral stream,” while an under-recruitment of
parietal areas associated with the “dorsal stream,” with
a limited integration of these two streams during visual
processing over time. Close to these results, Urbain et al.
[54] used a visual N-back task with MEG in children and
identified a greater load-dependent activation in the left
dorsal parietal cortex in the TD children, while in the left
ventral parietal cortex in those with ASD. Despite simi-
lar performance, this distinction would reflect a more
controlled (i.e., top-down) processing of visual stimuli in
the TD group, while being more automatic (i.e., bottom-
up) in the ASD participants, in line with the distinction
between dorsal and ventral attentional systems within
the parietal cortex [74]. In summary, these studies sug-
gest that visual processing during WM tasks is associ-
ated with increased activations in ventral areas alongside
diminished activation in dorsal areas, in individuals with
ASD relative to TD.

Three fMRI studies have documented atypical process-
ing of faces in WM in ASD, reporting similar perfor-
mance between ASD and TD groups. Herrington et al.
[55] conducted a 1-back task in children using superim-
posed images of neutral or emotional faces and houses,
with targets containing either same or different faces or
houses. They observed a similar activation of the fusiform
gyrus in both groups. By contrast, increased activation of
the dorsolateral prefrontal cortex was found in the ASD
group when the target contained a face, suggesting selec-
tive attention in order to further discriminate faces. For
the TD group, increased activation was found when the
target contained a house, suggesting selective attention
in this group was aimed at disregarding the automatic
percept of a face. Koshino et al. [56] used an N-back task
with mixed neutral and emotional faces, in adolescents
and young adults and observed reduced activations in
both left inferior prefrontal areas usually associated with
verbal processing and right posterior temporal areas usu-
ally associated with theory of mind, in participants with
ASD compared with TD. Activations within the bilat-
eral fusiform face areas (FFA), a key structure enabling
the processing of basic facial features and also involved
in object identification [75], were similar but atypically
located in ASD relative to TD (i.e., location of peak acti-
vation differed from that of the TD group), and also less
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connected to frontal areas. In adults, Kleinhans et al.
[57] used a 1-back task with neutral faces and reported
similar activation of bilateral FFA in ASD and TD groups,
but was less functionally connected in ASD with both
the subcortical face processing structures (amygdala and
superior colliculi) associated with fast emotional atten-
tion for faces [76] and the limbic structures (precuneus
and posterior cingulate gyri) that enable the processing
of emotional stimuli [77]. Overall, these results point
toward ASD participants having a relatively similar level
of FFA activation, but lower activity and connectivity
with brain areas related to the attention to faces and their
socio-emotional processing.

Short-term maintenance and manipulation

Included studies reported reduced activation of pre-
frontal areas (#=9), reduced deactivation of the DMN
(n=6), and atypical functioning of the WM-related brain
network (n="7), mainly during WM maintenance.

First, just over half (i.e., 9/16) of fMRI N-back studies
found reduced prefrontal activations in ASD relative to
TD, associated with diminished or enhanced activations
within posterior areas. In studies reporting reduced pre-
frontal activations in conjunction with enhanced pari-
etal or temporal activation, performance was similar
between ASD and TD groups in children and adults [51,
53, 56, 58]. By contrast, other fMRI studies that reported
reduced prefrontal activations without enhanced parietal
or temporal activations found significantly diminished
performance in groups with ASD relative to TD, in chil-
dren and adults [52, 59-61]. Close to these findings, in
a short report using an fMRI visuospatial mental rota-
tion task requiring manipulation of information, Silk
et al. [62] found in adolescents with ASD relative to TD
diminished activations within cortical and subcortical
(caudate head) frontal regions, with similar parietal acti-
vation, while similar between-group performance. Taken
together, these results suggest a general, diminished load-
dependent recruitment of the prefrontal areas, being par-
tially or fully offset by enhanced activation in posterior
sensory and attentional areas.

Second, some studies investigated the DMN, report-
ing atypical deactivation in the higher load conditions
of fMRI N-back tasks in ASD, with similar performance
in the ASD and TD groups. In adolescents with ASD
relative to TD, Chantiluke et al. [59] found in the verbal
3-back condition, reduced activation of the dorsolateral
prefrontal cortex associated with enhanced DMN deac-
tivation, suggesting a compensatory process. In adoles-
cents too, Rahko et al. [63] observed similar activation
of WM areas in the visuospatial 2-back condition and
similar DMN deactivation in ASD and TD groups. This
persisted in the 0-back condition in the ASD group
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only and was associated with diminished performance.
In contrast to these results, Vogan et al. [52, 61] found
a similar DMN deactivation in a visual 1-back task
with different levels of difficulty in children and adoles-
cents with ASD and TD, suggesting no reduced load-
dependent modulation of DMN deactivation. However,
in a 2-year follow-up study with the same participants,
Vogan et al. [53] reported a greater longitudinal load-
dependent DMN deactivation in those with ASD com-
pared with TD. In middle-aged adults with and without
ASD, Braden et al. [64] identified with a verbal 0-, 1-,
and 2-back task, similar load-dependent DMN deac-
tivation and similar performance between groups.
Hence, there are no clear results about DMN deactiva-
tion during WM tasks in ASD.

Third, more recent studies have explored memory
networks in ASD focusing on slow frequency bands in
EEG/MEG. Urbain et al. [58] identified reduced fronto-
temporal alpha connectivity associated with diminished
performance during a visual 2-back condition in children
with ASD relative to TD. This points to a less efficient
WM network during maintenance. Using the same par-
adigm in young and middle-aged adults, Yuk et al. [65]
found similar performance across ASD and groups TD,
but connectivity results differed for each phase. Mainte-
nance was associated with an alpha connectivity network
common to both groups, with an additional recruitment
of fronto-parietal areas and increased coherence, and
recognition was associated with diminished theta coher-
ence between right frontal and left parietal areas, when
comparing groups with ASD and TD. In adults too,
Larrain-Valenzuela et al. [66] manipulated memory load
during a modified Sternberg task and found that for TD
participants, there was enhanced alpha power in occipi-
tal areas and enhanced theta power in bilateral frontal
areas when load increased. There was, however, no load-
dependent modulation of alpha and theta power in the
ASD group, indicating that atypical oscillatory activity
in ASD may contribute to diminished WM performance.
More recently, Audrain et al. [67] identified in a visual
1-back task in adults with ASD and TD with similar
performance, that connectivity in the theta band during
maintenance phase consisted mainly in interhemispheric
posterior connections in ASD, while being mainly antero-
posterior in TD. In addition, connectivity in the alpha
band differed in ASD and TD in all WM phases. These
results point toward a more atypically functioning WM
maintenance relative to encoding and retrieval stages in
ASD (theta band), but a global lack of inhibition of task-
irrelevant processes (alpha band). Overall, in spite of
contrasting results, a decrease in antero-posterior theta
connectivity seems to characterize the WM maintenance
phase in autistic individuals. Enhanced recruitment of
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the alpha band may correspond to a compensatory pro-
cess, enabling greater inhibition to avoid interference.

Other studies on WM networks used fMRI during
N-back tasks. In middle-aged adults, Braden et al. [64]
identified a similar cortico-striatal-thalamic—corti-
cal network of activation in ASD and TD groups but a
reduced functional connectivity within this network in
ASD alongside similar performance, when switching
from 0- to 2-back condition. Using the method of con-
nectivity matrices, Barendse et al. [68] identified a lower
global efficiency (i.e., diminished transmission of neural
information within the network in adolescents with ASD)
along with performance in normal range. More recently,
Hawco et al. [69] reported within-group differences in
the location of prefrontal activations in young adults with
ASD, associated with a trend for reduced performance
when compared with TD participants, suggesting a link
between idiosyncratic prefrontal activation during WM
and diminished performance.

Studies on episodic long-term memory

Fifteen studies were included [78-92] (Table 2), which
were informative either on the processing of memorized
information only (n=6), or on memory-related processes
during either encoding or retrieval phases only (n=7), or
both (n=1), using fMRI or electrophysiological methods.

Effects of the type of material on neuroimaging results

Only one study focused on visually presented verbal
information. The studies reviewed used mainly visuospa-
tial material including faces. We first describe the elec-
trophysiological and then the fMRI results.

Neumann et al. [78] were interested in the old/new
effects with MEG elicited by the recognition of pseudow-
ords or abstract shapes. The memory performance of the
participants with ASD was lower than TD for the for-
mer type of stimuli and similar for the latter. The authors
identified an early right occipital activation (100-200 ms)
in ASD with both kinds of stimuli that did not occur in
controls, followed by a bilateral old/new effect (200-
500 ms) with shapes in ASD participants reflecting famil-
iarity-based recognition that was more left hemispheric
in controls. These results suggest that pseudowords were
processed and recognized similarly to visual material in
ASD relative to TD participants.

Desaunay et al. [79] used a visual associative recog-
nition task and identified a similar ERP time-course
on the occipital P2 (220-270 ms), mid-central FN400
(350-470 ms), and parietal LPC (600-700 ms) potentials
in adolescents and young ASD and TD adults, whereas
performance for ASD participants was lower. Amplitudes
were reduced in the group with ASD relative to TD on
both the P2 potential, thought to index an intermediate
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processing stage linking elementary perceptual processes
with higher-level semantic processes [93], and the FN400
potential, that reflects both conceptual priming and
familiarity process [94]. Two ERP studies on face recog-
nition reported similar performance between ASD and
TD, but differences on both the temporal N170 potential
(peaking 170 ms, and indexing attention and structural
perception of faces), and the temporal N250 potential
(also labeled as EPN, peaking 250 ms, and indexing famil-
iarity-based recognition for faces [95]). In children, Gunji
et al. [80] found a shorter latency on the N170 potential
for self, familiar and unfamiliar faces in ASD relative to
TD. Churches et al. [81] investigated the recognition of
unfamiliar faces after a study phase and found reduced
amplitudes of the N170 and N250 potentials in partici-
pants with ASD relative to TD. In summary, these ampli-
tude decrements suggest reduced attention to visual
stimuli and reduced integration of low-level perceptual
into high-level conceptual information and the semantic
memory system, with a decrease in familiarity strength
during visual recognition in ASD.

Other studies used fMRI. Greimel et al. [82] studied in
children and adolescents, the encoding of visually pre-
sented objects superimposed with either faces or houses.
Despite similar performance at test, encoding of subse-
quently recognized objects presented with a face was
associated, in ASD relative to TD, with reduced activa-
tions within bilateral inferior and medial frontal gyri and
the right intraparietal lobule, suggesting that encoding of
faces in the ASD group was less automatic and less asso-
ciated with social information than in TD. Recently, Lynn
et al. [83] evaluated the functional connectivity of the
FFA for faces versus non-faces (cars) stimuli, at encod-
ing and recognition stages in children, adolescents, and
adults. TD participants tended to improve performance
from adolescence to adulthood, while those with ASD
did not. With faces, the authors found reduced connec-
tivity between bilateral FFA with both prefrontal and
primary visual cortices in ASD relative to TD. This was
independent of age and occurred at both stages, suggest-
ing that reduced integration of information between dis-
tributed brain areas may lead to weaker representation of
faces in memory. These authors also identified in ASD,
age-related reduced connectivity between the right FFA
and the visual cortex only during the recognition phase,
suggesting that memory difficulties with faces may arise
more during recognition than encoding. Extending these
results in an updated study, the same team investigated
the age-related changes in the similarity of FFA activa-
tion [84]. For TD participants, they found an increasing
overlap of activations within a category (faces, cars) from
adolescence to adulthood in the right FFA—that pro-
cesses faces holistically while the left FFA processes them
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more featurally [96]—reflecting brain maturation for
holistic processing. In ASD. Similarity of FFA activation
increased from childhood to adolescence, presumably
reflecting maturation, but then decreased from adoles-
cence to adulthood. Recognition performance was more
related to the similarity score in the left FFA—while in
the right FFA in TD—which together suggests reduced
FFA specialization for faces and object identification
in ASD, and a more featural rather than configural pro-
cessing of these stimuli. Thus, fMRI studies complement
those in EEG, by showing diminished FFA specialization
for faces and objects and reduced integration of informa-
tion between distributed brain areas including bilateral
FFA and the visual cortex.

Encoding and retrieval processes in episodic LTM

Studies focusing on encoding and retrieval processes in
LTM explored either the functional connectivity during
single item recognition (n=2), the electrophysiological
recollective old/new effect (n=3), or associative pro-
cesses with fMRI (n=4).

First, Noonan et al. [85] conducted an fMRI source
recognition paradigm in adolescents and adults using
visually presented target words previously presented in a
visual or auditory modality. Functional connectivity was
analyzed between three seed regions of interest (left mid-
dle frontal, left superior parietal, and left middle occipital
cortex) and the whole brain. The authors found, in spite
of diminished performance in ASD, a large pattern of
similar connectivity in ASD and TD groups and unex-
pectedly enhanced left fronto-parietal functional con-
nectivity in participants with ASD relative to TD. Close
to these results, Chan et al. [86] investigated in children
and adults, the coherence in the theta band—associ-
ated with WM and LTM memory processes—during the
recognition phase of previously seen pictures. Antero-
posterior theta connectivity was greater in the left hemi-
sphere in ASD participants and in the right hemisphere
for TD ones, with a negative correlation between coher-
ence and performance in the ASD group only, suggesting
a threshold of connectivity beyond which performance
decreased. Taken together, these two studies identi-
fied enhanced hemispheric left connectivity during epi-
sodic recognition in the ASD compared with the TD
participants.

Using ERPs, Massand et al. [87] and Massand and
Bowler [88] conducted two successive studies focusing
on the familiarity-related FN400 and recollection-related
LPC potentials; overall memory performance was simi-
lar in ASD and TD groups in both studies. Massand et al.
[87] employed a single-word recognition paradigm and
found a parietal rather than anterior early FN400 old/
new effect (300—500 ms) in adults with ASD relative to
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TD, followed by a similar parietal LPC recollective pro-
cess (500—800 ms) in both groups. Massand and Bowler
[88] used a single-picture recognition test followed by
a phase where the color of the studied items had to be
recalled. The authors found a posterior and attenuated
FN400 old/new effect in the ASD group, occurring in a
large time-window (300-650 ms), followed by a similar
LPC old/new effect. More recently, Desaunay et al. [79]
used a visual associative recognition task in a study of
adolescents with ASD. They found in conjunction with
diminished performance in the ASD relative to the TD
participants, a reduced FN400 amplitude followed by
a LPC old/new effect presenting a parietal extension.
These findings suggest that effortful retrieval of associa-
tive information compensates for the lower familiarity
strength in the ASD participants. Overall, results from
these three ERP studies indicate that recognition in ASD
is qualitatively similar to that seen in TD and relies on
the same dual-process, but may, however, differ quantita-
tively, with diminished familiarity-related potentials and
preserved or even enhanced recollection-related poten-
tial in ASD.

Other fMRI studies explored associative memory in
ASD, with a focus on hippocampus as a key structure
underlying inter-item and item-context associations [97].
Gaigg et al. [89] evidenced a strong overlap of brain acti-
vations in adults with ASD and TD—including the left
inferior frontal gyrus and left hippocampus—with simi-
lar signal change with the degree of relational encoding
of word triplets accompanied by diminished subsequent
recognition. Between-group difference was limited to
absent or reduced signal change in prefrontal and pos-
terior hippocampal regions in the ASD group relative to
TD, when contrasting the degree of awareness (familiar-
ity/recollection) for subsequent retrieval. Three recent
studies have investigated associative memory with vis-
ual material. First, using a paradigm designed to assess
memory precision, Cooper et al. [90] identified similar
levels of activity and functional connectivity among pre-
frontal, hippocampal and parietal areas during encoding,
in adults with ASD and TD. By contrast, the recognition
phase included several differences albeit close perfor-
mance, including reduced left prefrontal activity, sug-
gesting limited pre-retrieval search or post-retrieval
monitoring, and reduced hippocampal connectivity
with the fronto-parietal network. Second, Hogeveen
et al. [91] investigated the associative encoding of paired
pictures in adolescents and young adults and identi-
fied increased hippocampal activity along with dimin-
ished connectivity between the medial temporal lobe
and postero-medial brain regions in the ASD relative to
the TD group, alongside similar between-group perfor-
mance. This enhanced activity and reduced connectivity
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were significantly inversely correlated, indicating that
the decreased inter-regional connectivity in ASD would
be efficiently compensated for by hippocampal hyper-
recruitment to support preserved associative memory.
Fronto-hippocampal connectivity was also reduced in
the ASD group compared with TD group. Third, Cook
et al. [92] performed an associative encoding task, ask-
ing participants from late childhood to adolescence to
rate if object—scene pairs were congruent, incongruent,
or intermediate. Participants with ASD and TD showed
both a similar congruency rating during encoding, and
the same facilitation for better subsequently recogniz-
ing congruent than incongruent pairs. In the TD group,
encoding of subsequently recognized pairs was associ-
ated with greater activation of the bilateral medial pre-
frontal cortex for intermediate relative to congruent
pairs, and with greater activation of the left medial tem-
poral lobe (including the hippocampus) for congruent
relative to intermediate pairs. By contrast, activations of
these two regions did not vary according to the level of
congruency in the ASD group. As congruent informa-
tion encoding is progressively supported by the medial
prefrontal cortex throughout development, the lack
of modulation observed in the ASD group may reflect
developmental immaturity; participant with ASD with
greater behavioral flexibility had higher activations in
bilateral, prevailing left medial prefrontal areas. Taken
together, these fMRI results extend those in EEG, show-
ing that processing of associative information is quali-
tatively similar in ASD as in TD. Notably, hippocampal
activation is similar or enhanced in ASD compared with
TD; between-group differences mainly consist in reduced
prefrontal activation and hippocampal connectivity.

Discussion

This systematic review highlights both great differences
and similarities in memory functioning between ASD
and TD, depending on the type of material (verbal, visu-
ospatial, faces), the type of memory (WM or episodic
LTM), and the memory phase examined (mainly episodic
encoding and retrieval). We attempt to relate these obser-
vations to the patterns of presence or absence of memory
difficulties in ASD that have been identified in several
meta-analyses. We also attempt to advance hypotheses
based on neuroimaging findings relating to the specific
characteristics of memory processes and representations
in ASD.

Hemispheric asymmetries: stronger representation

of verbal than visuospatial information

Meta-analyses about memory functioning in ASD sug-
gest lower WM and episodic LTM performances for visu-
ospatial than verbal material, and even larger memory
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difficulties for spatial memory and face recognition [5,
44, 46].

For verbal material, atypical right-hemisphere activ-
ity was identified during WM tasks using letters [51] and
LTM tasks using pseudowords [78]. Such findings sug-
gest that these kinds of stimuli orient participants with
ASD toward a shallower processing because of their
tendency to process verbal information in a less seman-
tic way than TD when not encouraged by the task [98].
Interestingly, encoding of visually presented words was
associated with similar activations and enhanced connec-
tivity within the left hemisphere in ASD relative to TD
[85, 89], which suggests that brain functioning in ASD
is closer to TD when the memory task material typically
triggers left-hemisphere processing. This could be sup-
ported by a tendency for the left hemisphere to be less
atypically developed than the right, as highlighted by
recent anatomical and functional connectivity studies in
ASD [99-101]. This relative preservation of hemispheric
left over right connectivity, in conjunction with the typi-
cal left-hemisphere specialization for semantic memory
and language [102-104], could result in better memory
for verbal over other types of material in ASD.

The autism-specific characteristics of visuospatial
memory could also be related to the relative preservation
of hemispheric left over right connectivity. Two studies
found that the left FFA, when compared with right FFA,
has a greater maturation [83] and a less reduced con-
nectivity with the visual cortex [84] in ASD. Two other
studies reported bilateral, prevailing left medial prefron-
tal areas activations during picture encoding [92], and a
leftward lateralization of functional connectivity during
picture recognition [86]. Less atypical connectivity in the
left than in the right hemisphere in ASD has been par-
ticularly demonstrated for intra-hemispheric visual-asso-
ciation fibers [105], especially for the inferior longitudinal
fasciculus supporting visual processing [106]. This asym-
metry of hemispheric connectivity, in conjunction with
both hemispheric visual specialization (i.e., local-featural
and global-configural processing being supported by
the left and right hemispheres, respectively [107]) and
reduced interhemispheric transfer of information due to
underconnectivity [99, 108], could lead to a more featural
memory for visual items, less related to their long-term
conceptual (semantic) representations. In this sense,
hemispheric isolation with reduced local/global integra-
tion of visual information has been evidenced during a
visual categorization task with EEG [109].

Functional imbalance between ventral and dorsal
streams may also account for visuospatial difficulties in
ASD [110, 111]. Indeed, some studies have identified sim-
ilar activations within the ventral stream in ASD as in TD
while being diminished within the dorsal stream [52-54],
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which corroborates the neuroimaging account of a spe-
cific dysfunction of the dorsal stream in visual perception
in ASD [112]. The ventral stream is typically associated
with object recognition, while the dorsal stream is most
selective for spatial information and direction of move-
ment. Dorsal-to-ventral transfer of information continu-
ally adjusts ventral stream processing toward the most
identification-relevant features of an object [113], facili-
tating face and object recognition [114]. Hence, atypi-
cal dorsal stream functioning, possibly resulting from
decreased anatomical connectivity of the superior lon-
gitudinal fasciculus and uncinate fasciculus [112], which
are among the most commonly reported association fib-
ers with altered white matter integrity in ASD [108], may
reduce the processing of intra-item spatial information,
also accounting for the weaker representation of visuos-
patial information in ASD. The maturation of the visual
system in TD individuals associates prolonged gray mat-
ter development within the ventral stream, supporting
its functional specialization, but later development of
white matter connectivity within the dorsal stream, that
improves higher-order visual perception over time [115].
Hence, atypical FFA specialization and dorsal stream
activation identified in the studies reviewed above may
reflect developmental differences between ASD and TD.

Similar atypical processes may also account for face
memory difficulties in ASD, since face recognition typi-
cally implicates the configural processing of facial fea-
tures as in a spatial task [116]. In that sense, the typical
rightward lateralization of the N170 potential is generally
attenuated in ASD [117]—although this was not inves-
tigated in the studies reviewed above. A similar level of
activation was observed in the FFA in ASD as in TD in
some studies [55, 57, 84], which suggests that the pro-
cessing of basic facial features is preserved, but with
a lower specialization for this kind of stimuli [84]. By
contrast, a global decrease in FFA connectivity suggests
that the typical integration of multimodal information in
memory for faces is reduced in ASD, including percep-
tual visual information within the ventral stream [83, 84/,
and socio-emotional information [56, 57], along with a
less automatic attention to these stimuli [55, 82].

Taken together, neuroimaging studies suggests that
the processing of written words during memory tasks
is relatively similar in ASD as in TD, while the concep-
tual processing of visuospatial information including
faces is reduced. Words would be more associated with
their long-term representation in the semantic memory
system than visuospatial information including faces.
Indeed, cognitive models suggest that efficiency of
encoding, storage, and retrieval, for either WM or LTM,
is related to the level of interaction between information
processing and the semantic memory system [10, 118].
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This causal link between reduced conceptual process-
ing of visuospatial information and weaker representa-
tion in memory has been demonstrated with EEG studies
showing amplitude decrements on the early potentials
associated with priming and next on the familiarity-
related potential [79-81]. Familiarity, a graded signal that
increases with the number of intra-item informational
links that match the specific face or object stored into
the semantic memory system [119] is then subsequently
reduced. This account is borne out by a behavioral study
reporting that memory for semantically related pictures
in ASD is enhanced by associating picture names to the
pictures themselves, suggesting that words would foster
item and inter-item conceptual processing, leading to
better memory [120].

Antero-posterior asymmetries: high-fidelity WM
representations with few top-down processes

Most meta-analyses have reported a medium or medium
to large effect sizes for ASD-TD differences in WM [5, 43,
44, 121], indicating autism-related difficulties with active
storage and manipulation of information.

Diminished load-dependent activation of prefrontal
areas, without or with compensatory enhanced temporo-
parietal activation, was the most consistent finding in
the WM studies in ASD reviewed here. It may implicate
the reduced long-range functional connectivity in ASD,
which results in a lower recruitment of anterior com-
pared with posterior brain areas [108, 122]. In that sense,
one fMRI study reported a decrease in functional con-
nectivity among a large brain network [64], and several
EEG/MEG studies reported a decrease in antero-poste-
rior alpha and theta coherence during the maintenance
phase [58, 65, 67], in accordance with the long-range
underconnectivity at lower frequency bands in ASD
[100]. Alternatively, reduced load-dependent prefrontal
areas, in conjunction with reduced parietal activation
[52, 53, 61, 63], may implicate a general lack of modu-
lation with memory tasks demand in ASD [123], or the
general idiosyncratic brain activation in ASD [124, 125],
as shown in prefrontal areas [69].

The second main result was the similar or enhanced
DMN deactivation in ASD compared with TD. Enhanced
DMN deactivation found in adolescents with ASD [53,
59] may correspond to a compensatory process for the
under-recruitment of prefrontal areas during short-term
maintenance, since DMN deactivation typically correlates
negatively with fronto-parietal activation during WM [18]
and predicts memory performance [126]. On the other
hand, in the context of a developmental shift in TD from
DMN hyper-connectivity in childhood to underconnec-
tivity in adolescence and adulthood, this increased DMN
deactivation may result from the delayed maturation of
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DMN in adolescents with ASD [127, 128]. This lack of
coherence among results prevents any clear conclusions on
the role of DMN functioning in WM in ASD.

Recent research in TD individuals suggests that high-
fidelity storage of WM representations strongly involves
sensory cortices [129]. By contrast, as neurons in the pre-
frontal cortex have been shown to be involved in the cod-
ing for combinations of item- and task-related information
[130], subsequent studies have convergingly concluded
that persistent prefrontal activity during WM maintenance
is associated not only with rehearsal, but also with selec-
tive task-related information, providing top-down control
to select stimulus-specific activation in sensory regions
[131]. WM tasks with low information processing demand
would mainly rely on sensory cortices, while those requir-
ing higher abstraction or information processing would
necessitate enhanced prefrontal top-down control. In addi-
tion, three of the reviewed WM studies reported dimin-
ished fronto-striatal connectivity in ASD relative to TD
[58, 62, 64] that is typically associated with WM updating
[132—134]. Information transferred from the striatum to
the prefrontal cortex is related to the task set, controlling
when representation within the prefrontal cortex should
be maintained as opposed to updated, e.g., during manipu-
lation or to avoid interference. Hence, reduced prefrontal
activation and striato-prefrontal connectivity in ASD may
suggest diminished rehearsal and top-down processes,
which in turn may impair active maintenance of informa-
tion and make it sensitive to decay. Representation of WM
information in posterior temporo-parietal areas may be
similar in ASD as in TD, but less specifically relevant to the
task set, and more sensitive to interference.

Though typical WM development involves than same—
primarily fronto-parietal—brain areas over time, age-
related activations increase in frontal areas and decrease
in posterior areas [135, 136]. To some extent, the WM net-
work in ASD may result from immature development due
to altered integrity of frontal white mater or long-range
fibers. On the one hand, anatomical connectivity in ASD is
more reduced in regions that include frontal lobe pathways
compared to other brain regions [137]. On the other hand,
the superior longitudinal fasciculus and occipitofrontal
fasciculi are two of the most commonly reported associa-
tion fibers with altered white matter integrity in ASD [108],
while their preserved integrity correlates with WM perfor-
mance in TD [138].

Preserved posterior and hippocampal activity: weak
context processing does not impair relational information
in episodic LTM

A meta-analysis on memory in ASD reported a small
to medium effect size in episodic LTM, suggesting dif-
ficulties at encoding and retrieval stages of memory
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processing [5]. Associative memory was not any more
diminished than non-associative memory in subgroup
comparisons. Most of the studies reviewed here reported
asymmetries between left and right hemispheres, pos-
terior and anterior areas in ASD, when compared with
TD. Although findings from episodic memory studies
are heterogeneous, they are also consistent with these
differences.

First, the results are consistent with the account of pre-
served memory functioning in ASD for tasks involving
more left-hemisphere neurophysiological processes than
right ones, such as verbal memory tasks [85, 89]—in line
with the relative preservation of hemispheric left over
right connectivity in ASD [99-101]. Besides, the left-
ward lateralization of medial prefrontal areas activations
during picture encoding [92] and of electrophysiological
theta coherence in ASD contrasting with rightward in
TD, during picture recognition [86], contradicts the typi-
cal material-specific lateralization of brain activity (vis-
ual conceptual representations associated with the right
hemisphere, [107]). There are two possible reasons for
this atypical leftward lateralization of visual LTM. It may
be because of the inclusion of young participants in these
two studies [86, 92], leftward lateralization of connectiv-
ity during visual processing being particularly evident in
younger ASD participants [139]. It could also result from
greater white matter integrity of the left inferior longitu-
dinal fasciculus in ASD relative to the right [106].

Second, fMRI and EEG studies point toward a pre-
served or even enhanced functioning of the posterior
structures linked to associative memory, especially the
hippocampus. All the fMRI studies on LTM reviewed
here that have focused on the hippocampus have iden-
tified its similar [82, 89, 90] or even increased [91] acti-
vation in ASD compared with TD. This result could be
related to the increase in hippocampal volume identi-
fied in childhood [140] and adolescence in ASD [141].
In addition, ERP recognition studies have consistently
showed diminished or atypically located early mid-
central (FN400) potentials in ASD relative to TD, in
conjunction with similar [87, 88] or even wider [79]
late positive parietal (LPC) potential. This electro-
physiological pattern may indicate a greater involve-
ment of recollection over familiarity processes, which,
however, contradicts behavioral observations of lower
recollective awareness in ASD [38-40], though dis-
crepant results [42]. Instead, as the LPC potential
typically indexes associative recognition [26-28] and
involves the hippocampus [142], it may rather indicate
a greater involvement of associative processes. These
ERP results may correspond to an immature develop-
ment of memory processes, as observed in TD children
where episodic recognition is only associated with the
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LPC potential, stable with age, while the FN400 poten-
tial increases to adulthood [28, 143], possibly implicat-
ing long-range underconnectivity in ASD that impacts
mostly frontal connectivity and preserves cognitive
processes subserved by posterior brain areas [122].
Given the binding properties of the hippocampus in
LTM, these fMRI and ERP results suggest a greater
involvement of relational representations in episodic
memory in ASD. This could explain the greater reli-
ance on detailed (verbatim) over global and conceptual
(gist-based) memory representations in ASD [144], in
contrast to a developmental shift improving gist-based
strategies observed in TD individuals across the lifes-
pan [145]. Moreover, a diminished prefrontal activation
or prefrontal-hippocampal connectivity co-occurred
with this preserved hippocampal activation during rela-
tional encoding [82, 91] or retrieval [90] in fMRI stud-
ies. Most recent theories in TD suggest complementary
learning systems, where the hippocampus encodes
moment-to-moment changes in incoming inputs, while
the prefrontal cortex integrates over time their simi-
larities into abstract categories; the prefrontal cortex
enables a context-guided encoding, via a top-down
selection of relevant information by the hippocampus
[146, 147]. This process could be reduced in ASD, as
evidenced by Cook et al. [92], showing no modulation
between medial prefrontal areas and medial tempo-
ral lobe activations according to the degree of object—
scene congruency at encoding, contrary to the TD
control group. Hence, reduced prefrontal-hippocampal
connectivity may explain the difficulties of individuals
with ASD in identifying similarities between related
information [33, 34], and the greater difficulties with
more complex stimuli such as sentences or stories [45].
It may also explain the normalization of memory per-
formance in situations providing support for the pro-
cessing of relational information [33, 36, 37].

Third, two studies reported greater differences between
ASD and TD occurring during the recognition than
encoding phase. Lynn et al. [83] described a greater
reduction in connectivity between the right FFA and the
visual cortex during face recognition than during encod-
ing, and Cooper et al. [90] reported diminished frontal
activation and connectivity between the hippocampus
and fronto-parietal network during visual associative rec-
ognition in ASD individuals. During encoding, this last
pattern was similar in TD participants. Moreover, while
encoding and retrieval in episodic memory typically
share common processes [148], reduced post-retrieval
verification processes may further hamper recognition,
as identified by two ERP studies showing diminished
activity or non-specific latency of the related late frontal
potential [87, 88].
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Synthesis: specific memory characteristics in ASD linked
functional brain asymmetries in the three anatomical
planes

The studies reviewed here highlight functional brain
asymmetries between ASD and TD participants during
memory tasks in three anatomical planes. These asym-
metries consist in greater reliance on the left hemi-
sphere than the right, on posterior structures including
the hippocampus rather than anterior brain regions,
and on ventral occipito-temporal rather than dorsal
occipito-parietal stream. We suggest that interactions
between location and severity of these functional alter-
ations with specialization of brain areas are linked to
in atypical memory functioning in ASD. Although this
functioning relies on the same basic processes as are
used in TD individuals, they are employed in a different
way. Based on the studies reviewed here, we propose a
neuroimaging model of memory functioning in ASD,
focusing on these functional asymmetries with assump-
tions about the autism-specific characteristics of mem-
ory processes and representations (Fig. 2).

The first asymmetry may emerge from the relative
preservation of left over right intra-hemispheric con-
nectivity, identified from early childhood [149] through
to later development in ASD [99-101], and may con-
tribute to the greater verbal over visuospatial memory
in ASD highlighted in meta-analyses. This may result
in a processing of verbal information in ASD close to
that in TD, with a preserved memory representation
of these stimuli supported by the semantic memory
system, contrasting with reduced configural process-
ing of visuospatial information including faces in ASD,
involving more featurally-based representation, less
associated with the semantic memory system.

The second asymmetry may result from both the
overall long-range underconnectivity in ASD that
begins from early development and impacts mostly
frontal connectivity [100, 108, 122, 137, 150] and the
greater hippocampal volume in ASD compared with
TD [140, 141] and may also interfere with memory pro-
cesses, particularly those involved in WM, as also high-
lighted by the meta-analyses. It may impair the typical
age-dependent reliance of both WM [135, 136] and epi-
sodic LTM [151] on frontal areas, attenuating rehearsal
and top-down processes that are critical for WM main-
tenance and the context-guided encoding pre- and
post-retrieval processes in LTM, also supporting high-
fidelity WM representations and rich relational infor-
mation in episodic LTM.

The third asymmetry, based on only few results, may be
related to dorsal stream dysfunction in ASD also impli-
cating underconnectivity [108, 112] and may further
explain the greater difficulties in memory tasks requiring
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During WM maintenance and episodic
recognition

- Relative preservation of
posterior activity (E:)), including
hippocampal one (IF])

- Diminished frontal activity, and
long range antero-posterior
connectivity ()
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Material-dependent asymmetries

KVerbaI: relative preservation of
left (E:)) over right (E>)
hemispheric activity and
connectivity
- Visuospatial: greater impairment
of dorsal streams () than ventral

Qnes c?)

Impaired working memory, especially visuospatial

Ed§$ - Impaired episodic memory for complex stimuli,
— especially visuospatial, including face recognition

Fig. 2 Asummary of brain functional asymmetries during memory processing in ASD. Brain functional asymmetries during memory processing in
ASD are dependent to the material (top right part of the panel): a relative preservation of left over right-hemisphere activity and connectivity
for verbal and visuospatial material and a greater impairment of dorsal streams than of ventral ones, for visuospatial material. Apart from these
material-dependent effects, functional asymmetries were generally found during working (WM) maintenance and episodic recognition (top
left part of the panel): a relative preservation of posterior activity—including a full hippocampal one—and connectivity over frontal activity and
antero-posterior long-range connectivity. Interactions between the location of these functional alterations with specialization of brain areas
may result in atypical WM (diminished rehearsal process and top-down control, lowered task-set relevance) and episodic memory (reduced
context-guided encoding, pre- and post-retrieval processes; high episodic processing of relational information, with lowered general context
processing), and underpin the cognitive pattern of memory preservation and difficulties identified in meta-analyses in ASD (lower part of the
panel), including impaired—especially visuospatial—WM and episodic memory for complex stimuli, including face recognition

spatial processing of information such as memory for
faces.

Intriguingly, within these asymmetries, the brain areas
with relatively preserved activity and connectivity in
ASD when compared to TD, are those where in humans
white matter develops first, during the early phases of
life. Structural neuroimaging studies of white matter
in TD have shown a leftward asymmetry in fetuses and
neonates [152], both posterior-to-anterior and central-
to-peripheral direction of maturation during the first few
years [153], and earlier maturation in the ventral stream
compared with the dorsal stream during childhood [115],
which questions the link in ASD between atypical early
brain development and later memory functioning.

Limitations

This review has several limitations. First, although all but
one of the reviewed studies reached a high or very high
quality on the Kmet score, only half achieved the maxi-
mum quality for the appropriate sample size. Hence, a low
number of participants in reviewed studies may limit the
robustness of their brain imaging results. Second, diag-
nostic criteria and psychometric data for participants with

ASD were heterogeneous across studies, which may have
induced variability in neuroimaging results. Indeed, the
IQ of individuals with ASD is a significant factor influenc-
ing differences in memory performance between groups
with ASD and TD [5], and it also shows a substantial vari-
ability in their development into adulthood [154]. The age
ranges of participants were sometimes wide, both within
and between studies. In addition, no neuroimaging study of
memory has been conducted in individuals with ASD and
language impairment (ASD-LI), although behavioral stud-
ies have evidenced a specific functioning of their declarative
memory [155]. Third, while the methodology of the WM
studies was relatively homogeneous, based on N-back tasks,
the methodology of LTM studies was heterogeneous, which
made it more difficult to identify a clear pattern of results.
In both cases, there was little use of verbal memory tests,
which is a weakness of neuroimaging memory studies in
ASD, especially given that academic learning relies in sub-
stantial part on this type of memory. Moreover, the studies
reviewed here mainly used recognition tasks, on which indi-
viduals with ASD perform similarly to those with TD [5],
while free recall tasks, for which ASD individuals experience
more difficulty, have barely been explored in neuroimaging.
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The combined variability of reviewed studies regarding the
age of participants, the memory tasks used, the stage of the
memory process investigated, as well as the nature of the
neural signal acquired, made it not possible to produce a
quantitative (meta-analytic) confirmation of the synthesis.
Fourth, the proposed neuroimaging model is based on func-
tional differences between ASD and TD, including brain
activity and connectivity, that presumably are influenced
by structural differences in gray and white matter. How-
ever, none of reviewed studies included structural measures,
making it unclear to what extent structural abnormalities
account for the functional differences between ASD and
TD groups. Finally, the interpretations of the differences
between ASD and TD concerning memory processes and
representations are based on the presumption of identical
brain specialization, which remains difficult to confirm.

Conclusions and future directions
On the basis of the studies reviewed here, we proposed
a neuroimaging model of memory in ASD based on
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functional asymmetries (i.e., of activity and connectivity)
in three anatomical planes. We related these asymmetries
to anatomical and structural connectivity alterations
commonly identified in ASD. This neuroimaging model
helps explain the pattern of behavioral results depending
on material or type of memory in several meta-analyses.
Although this model has the potential to unify widely dis-
parate results, it also faces several limitations, including
lack of quantitative (meta-analytic) confirmation. Future
research could confirm or improve this model, by com-
bining measures of structural and functional connectivity
in same memory paradigms and by varying type of mem-
ory, type of material, and level of complexity of informa-
tion in same participants.

Appendix

Quality assessment of included WM and episodic LTM
studies (Kmet, Lee, & Cook, 2004, checklist). Scores:
2 =Yes, 1 =Partial, 0=No, N/A =not applicable.

Chantiluke
etal. [59]

Kmet, Lee, & Audrain Barendse Braden Chan
Cook (2004) etal. etal.[68] etal. etal.
checklist for [67] [64] [86]
assessing the

quality of

quantitative

studies

Churches
etal.[81]

Cook Cooper Desaunay Gaigg, Greimel Guniji
etal. etal etal,[79] etal. etal, etal.
[92]  [90] [89] [82] [80]

1.Question/ 2 2 2 2 2
objective

sufficiently

described?

2. Study 2 2 2 2 2
design

evident and

appropriate?

3.Method of 1 2 2 2 2
subject/com-

parison group

selection or

source of

information/

input variables

described and

appropriate?

4. Subject 2 2 2 2 2
(and compari-

son group, if

applicable)

characteristics

sufficiently

described?

5. If inter- N/A N/A N/A N/A 2
ventional

and random

allocation was

possible, was

it described?

N/A N/A N/A N/A N/A N/A N/A
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Kmet, Lee, &
Cook (2004)
checklist for
assessing the
quality of
quantitative
studies

Audrain
etal.
[67]

Barendse
et al. [68]

Braden
etal.
[64]

Chan
etal.
[86]

Chantiluke Churches
etal. [59] etal.[81]

Cook Cooper

etal.
[92]

etal.
[90]

Desaunay
etal., [79]

Gaigg,
etal.
[89]

Greimel
etal.,
[82]

Gunji
etal.
[80]

6. If interven-
tional and
blinding of
investigators
was pos-
sible, was it
reported?

7.If interven-
tional and
blinding of
subjects was
possible, was
it reported?

8. Outcome
and (if
applicable)
exposure
measure(s)
well defined
and robust
to measure-
ment/mis-
classification
bias? Means
of assessment
reported?

9. Sample size
appropriate?
10. Analytic
methods
described/
justified and
appropriate?
11. Some
estimate of
variance is
reported for
the main
results?

12. Controlled
for confound-
ing?

13. Results
reported in
sufficient
detail?

14. Conclu-
sions sup-
ported by the
results?

Total score
Percentage

N/A

N/A

2

21
95%

N/A

N/A

21
95%

N/A

N/A

95%

N/A

N/A

22
100%

1 N/A

1 N/A

25 20
89% 91%

N/A

N/A

95%

N/A

N/A

22
100%

N/A

N/A

22
100%

N/A

N/A

21
95%

N/A

N/A

95%

N/A

N/A

19
86%
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Kmet, Lee,& Hawco Herrington Hogeveen Kleinhans Koshino Koshino Larrain- Luna Lynn Massand Massand
Cook (2004) etal. et al. [55] etal.[91] etal.[57] etal.[51] etal.[56] Valenzuela etal. etal. etal.[87] &Bowler
checklistfor  [69] etal. [66] [60] [83] [88]
assessing the

quality of

quantitative

studies

1. Question/ 2 2 2 2 2 2 2 2 2 2 2
objective

sufficiently

described?

2. Study 2 2 2 2 2 2 2 2 2 2 2
design evident

and appropri-

ate?

3. Method of 1 2 2 2 1 1 2 1 1 1 2
subject/com-

parison group

selection or

source of

information/

input variables

described and

appropriate?

4. Subject (and 2 2 2 2 2 2 2 1 2 1 2
comparison

group, if

applicable)

characteristics

sufficiently

described?

5. Ifinter- N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
ventional

and random

allocation was

possible, was it

described?

6.Ifinterven-  N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
tional and

blinding of

investigators

was pos-

sible, was it

reported?

7. If interven- N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
tional and

blinding of

subjects was

possible, was it

reported?

8. Outcome 2 2 2 2 2 2 2 2 2 2 2
and (if applica-
ble) exposure
measure(s)
well defined
and robust to
measurement/
misclassifica-
tion bias?
Means of
assessment
reported?

9.Sample size 2 1 2 2 1 1 2 1 2 1 1
appropriate?
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Kmet, Lee,& Hawco Herrington Hogeveen Kleinhans Koshino Koshino Larrain- Luna Lynn Massand Massand
Cook (2004) etal. et al. [55] etal.[91] etal.[57] etal.[51] etal.[56] Valenzuela etal. etal. etal.[87] &Bowler
checklistfor  [69] etal. [66] [60] [83] [88]
assessing the

quality of

quantitative

studies

10. Analytic 2 2 2 2 2 2 2 2 2 2 2
methods

described/

justified and

appropriate?

11. Some 2 2 2 1 2 2 2 2 2 2 2
estimate of

variance is

reported for

the main

results?

12.Controlled 2 2 2 2 2 2 2 2 2 2 2
for confound-

ing?

13. Results 2 2 2 2 2 2 2 2 2 2 2
reported in

sufficient

detail?

14. Conclu- 2 2 2 2 2 2 2 2 2 2 1
sions sup-

ported by the

results?

Total score 21 21 22 21 20 20 22 19 21 19 20

Percentage 95% 95% 100% 95% 91% 91% 100% 86%  95%  86% 91%

Kmet, Lee, & Neumann Noonan, O’Hearn Rahko Silk Urbain, Urbain Vogan Vogan Vogan Yuk
Cook (2004) etal.[78] Haist, & et al. [84] etal. etal. Pang, & etal. etal. etal. etal. et al.
checklist for Muller [85] [63] [62] Taylor [58] [52] [61] [53] [65]
assessing the [54]

quality of

quantitative

studies

1. Question/ 2 2 2 2 2 2 2 2 2 2 2
objective

sufficiently

described?

2. Study design
evident and
appropriate?

3. Method of 2 2 1 2 2 1 1 1 1 1 1
subject/compar-

ison group selec-

tion or source

of information/

input variables

described and

appropriate?

4.Subject (and 2 2 2 1 2 2 2 2 2 2 2
comparison

group, if applica-

ble) characteris-

tics sufficiently

described?

N
N
N
N
N
N
N
N
N
N
N
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Kmet, Lee, & Neumann Noonan, O’Hearn Rahko Silk Urbain, Urbain Vogan Vogan Vogan Yuk
Cook (2004) etal.[78] Haist, & et al. [84] etal. etal. Pang, & etal. etal. etal. etal. et al.
checklist for Muller [85] [63] [62] Taylor [58] [52] [61] [53] [65]
assessing the [54]

quality of

quantitative

studies

5. Ifinterven- N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

tional and ran-
dom allocation
was possible,
was it described?

6. If interven- N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
tional and

blinding of

investigators was

possible, was it

reported?

7.If interven- N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
tional and blind-

ing of subjects

was possible,

was it reported?

8.Outcomeand 2 2 2 2 2 2 2 2 2 2 2
(if applicable)
exposure
measure(s)

well defined
and robust to
measurement/
misclassification
bias? Means

of assessment
reported?

9. Sample size 0 1 2 2 0 2 2 2 2 2 2
appropriate?

10. Analytic 2 2 2 2 2 2 2 2 2 2 2
methods

described/

justified and

appropriate?

11. Some esti- 2 2 2 1 1 2 2 2 2 2 2
mate of variance

is reported for

the main results?

12. Controlled 2 2 2 2 1 2 2 2 2 2 2
for confounding?
13. Results 2 2 2 2 1 2 2 2 2 2 2

reported in suf-
ficient detail?

14. Conclusions 2 2 2 2 2 2 2 2 2 2 2
supported by
the results?

Total score 20 21 21 20 17 21 21 21 21 21 21
Percentage 91% 95% 95% 91% 77% 95% 95% 95% 95% 95% 95%
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Abbreviations
ASD Autism spectrum disorder

DMN Default-mode network

EEG/MEG Electro-/magnetoencephalography

ERP Event-related potential

FFA Fusiform face areas

fMRI Functional magnetic resonance imaging
FN400 potential Frontal, negative, around 400 ms

LT™M Long-term memory

LPC potential Late positive (or parietal) component
D Typical development

WM Working memory
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