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Abstract 

Background: Phelan‑McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused by haploinsuffi‑
ciency of the SHANK3 gene and characterized by global developmental delays, deficits in speech and motor function, 
and autism spectrum disorder (ASD). Monogenic causes of ASD such as PMS are well suited to investigations with 
novel therapeutics, as interventions can be targeted based on established genetic etiology. While preclinical studies 
have demonstrated that the neuropeptide oxytocin can reverse electrophysiological, attentional, and social recogni‑
tion memory deficits in Shank3‑deficient rats, there have been no trials in individuals with PMS. The purpose of this 
study is to assess the efficacy and safety of intranasal oxytocin as a treatment for the core symptoms of ASD in a 
cohort of children with PMS.

Methods: Eighteen children aged 5–17 with PMS were enrolled. Participants were randomized to receive intrana‑
sal oxytocin or placebo (intranasal saline) and underwent treatment during a 12‑week double‑blind, parallel group 
phase, followed by a 12‑week open‑label extension phase during which all participants received oxytocin. Efficacy 
was assessed using the primary outcome of the Aberrant Behavior Checklist‑Social Withdrawal (ABC‑SW) subscale 
as well as a number of secondary outcome measures related to the core symptoms of ASD. Safety was monitored 
throughout the study period.

Results: There was no statistically significant improvement with oxytocin as compared to placebo on the ABC‑SW 
(Mann–Whitney U = 50, p = 0.055), or on any secondary outcome measures, during either the double‑blind or open‑
label phases. Oxytocin was generally well tolerated, and there were no serious adverse events.

Limitations: The small sample size, potential challenges with drug administration, and expectancy bias due to rely‑
ing on parent reported outcome measures may all contribute to limitations in interpreting results.

Conclusion: Our results suggest that intranasal oxytocin is not efficacious in improving the core symptoms of ASD in 
children with PMS.

Trial registration NCT02710084.
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Background
Gene discovery approaches, followed by functional anal-
ysis using model systems, have clarified the neurobiology 
of several genetic subtypes of autism spectrum disorder 
(ASD) and led to important opportunities for developing 
novel therapeutics [44, 48, 60, 77]. ASD is now under-
stood to have multiple distinct genetic risk loci, and one 
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example is SHANK3, where haploinsufficiency through 
deletion or sequence variants causes Phelan-McDermid 
syndrome (PMS), which is characterized by global devel-
opmental delay, motor skills deficits, delayed or absent 
speech, and ASD [71]. SHANK3 is the critical gene in this 
syndrome [15, 16, 29], and studies indicate that loss of 
one copy of SHANK3 causes a monogenic form of ASD 
with a frequency of at least 0.5% of ASD cases and up to 
2% of ASD with moderate to profound intellectual dis-
ability [53].  SHANK3 codes for a master scaffolding pro-
tein in postsynaptic glutamatergic synapses and plays a 
critical role in synaptic function [14]. Using Shank3-defi-
cient mice and rats, specific deficits in synaptic function 
and plasticity in glutamate signaling have been identi-
fied [17, 42, 44, 45, 47, 59, 70, 81]. Importantly, studies 
in Shank3-deficient rats have demonstrated that oxytocin 
reverses synaptic plasticity deficits in the hippocampus 
and the medial prefrontal cortex, in addition to revers-
ing behavioral deficits in long-term social recognition 
memory and attention [45]. Furthermore, oxytocin has 
recently been shown to stimulate neurite outgrowth and 
increase gene expression of Shank3 protein in human 
neuroblastoma cells [84] and to reverse neurite abnor-
malities in Shank3-deficient mice [65].

Oxytocin is an FDA-approved, commercially available 
medication that can be compounded into an intrana-
sal solution for passage through the blood–brain barrier 
(BBB). Oxytocin is the brain’s most abundant neuropep-
tide; it can act as a classical neurotransmitter, a neuro-
modulator, and a hormone with actions throughout the 
body [10, 36, 78]. In animal models, oxytocin has been 
demonstrated to increase social approach behavior, 
social recognition, social memory, and to reduce stress 
responses [18, 21, 52]. In humans, oxytocin is known as 
a strong modulator of social behavior and increases gaze 
to eye regions, social cognition, social memory, empathy, 
perceptions of trustworthiness, and cooperation within 
one’s own group [9, 11, 22–25, 28, 34, 35, 38, 39, 49–51, 
58, 63, 66, 67, 68, 75, 76, 83].

Studies of intranasal oxytocin suggest equivocal effects 
on social behavior both generally and in ASD [5, 6, 22, 
24–27, 40, 41, 62, 74, 82, 83]. The largest study in ASD 
to date did not demonstrate a significant improvement 
in social behavior with intranasal oxytocin [69]. There 
are many proposed reasons why oxytocin has proven 
unreliable in ASD, including due to issues around brain 
penetrance, dosing, and trial design [1, 54, 61]. However, 
the clinical and etiological heterogeneity of ASD pose 
prominent obstacles for successful clinical trials in ASD 
in general and likely contributes to challenges detect-
ing consistent effects with oxytocin. While it is neces-
sary to exercise caution in interpreting the literature to 
date as justification for the current trial, we sought to 

address this issue of heterogeneity by recruiting a sam-
ple population with a shared underlying genetic etiol-
ogy. The following study was conducted to assess the 
safety and efficacy of oxytocin in children with PMS, all 
of whom had a deletion or pathogenic sequence variant 
of the SHANK3 gene. We hypothesized that individuals 
with PMS would show improvement in social withdrawal 
symptoms following oxytocin administration.

Methods
We used a double-blind, placebo-controlled parallel 
group design in 18 children with PMS, aged 5 to 17 years 
old, to evaluate the impact of oxytocin on impairments 
in socialization, language, and repetitive behaviors. The 
study protocol was approved by the Mount Sinai Program 
for the Protection of Human Subjects, and all caregiv-
ers signed informed consent. Participants were enrolled 
between May 2016 and November 2019 and randomized 
to receive either intranasal oxytocin or matching placebo 
(intranasal saline) for 12  weeks during the double-blind 
phase, followed by a 12-week open-label extension with 
intranasal oxytocin.

All participants had pathogenic deletions encom-
passing SHANK3 (n = 12) or SHANK3 sequence vari-
ants (n = 6). Among participants with deletions, two 
had ring chromosome 22. The mean deletion size 
was 3.1  Mb (range = 55  Kb–8.2  Mb; SD = 2.7  Mb). 
Among participants with sequence variants, three had 
p.Ala1227Glyfs*69, two had p.Leu1142Valfs*153, and 
one had p.Ile1094Thrfs*100. Seventeen of 18 partici-
pants met criteria for ASD based on clinical consensus 
using the Autism Diagnostic Observation Schedule, 
Second Edition (ADOS-2) [56], the Autism Diagnos-
tic Interview-Revised (ADI-R) [55], and the Diagnostic 
Manual for Mental Disorders, Fifth Edition (DSM-5; [4]).

The primary outcome measure was the Aberrant 
Behavior Checklist-Social Withdrawal subscale (ABC-
SW; [2]) and was selected to capture a core symptom 
domain in ASD. Secondary outcome measures included 
the Repetitive Behavior Scale-Revised (RBS-R, [13]), the 
Short Sensory Profile (SSP, [30]), the Macarthur-Bates 
Communicative Development Inventory (MCDI, [32, 
33]), the Vineland Adaptive Behavior Scales, Second 
Edition [73], the Clinical Global Impression-Improve-
ment Scales (CGI-I, [43]), and the Mullen Scales of Early 
Learning (MSEL; [57]). The MSEL was chosen to assess 
cognitive ability as recommended in individuals with 
PMS who are often unable to complete standardized 
IQ tests [72], developmental quotients were calculated 
as previously described in the literature [31] to evaluate 
baseline ability, and age equivalents were used to assess 
change with treatment.
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Additional exploratory measures were administered 
using electrophysiology and eye tracking paradigms, 
and if feasibility is established, results will be reported 
in a subsequent publication.

To be eligible to participate, all participants had a 
minimum raw score of 12 on the ABC-SW at enroll-
ment, which was selected by adding approximately 
one standard deviation to the mean ABC-SW subscale 
score derived from a normative sample of 601 children 
aged 6–17 with intellectual disability [19] and as sug-
gested by Aman and Singh [3]. All participants were on 
stable medication regimens for at least three months 
prior to enrollment and throughout the study period.

Drug administration
Oxytocin was delivered in 5-ml bottles with a dosage 
pump manufactured by Novartis in Europe and mar-
keted as Syntocinon™ under an Investigational New 
Drug Application (IND) from the FDA (IND #104496). 
The first seven participants started the trial with a 
dose of 24 international units (IU) twice daily (BID), 
which was adjusted to 12 IU BID after two participants 
experienced increased irritability. Subsequently, after 
the first two-week check-in call, if the drug was well 
tolerated, the dose was increased to 24  IU BID. Each 
insufflation delivered 4  IU and three insufflations 
(12 IU) in each nostril were given twice daily for a total 
daily dose of 48 IU. The dose of 24 IU BID was chosen 
because it is the most commonly used in the literature 
in sample populations with ASD [5, 6, 40, 41, 62, 74]. 
Identical doses were used during the open-label treat-
ment phase. Adherence to treatment was assessed by 
caregiver report and drug diary. Randomization and 
blinding was performed by the Mount Sinai Research 
Pharmacy. Caregivers received written instructions for 
how to administer the study drug, and the first dose 
was administered by the principal investigator with the 
caregiver observing.

Efficacy and safety measurements were taken at 
baseline, and at weeks 4, 8, and 12 of each treatment 
phase (double blind and open-label). An additional 
safety assessment was done at week 2 in both phases. 
Monitoring of adverse events (AEs) was done using 
an adapted semi-structured interview, the Safety and 
Monitoring Uniform Report Form (SMURF). AEs were 
documented with respect to severity, duration, man-
agement, relationship to study drug, and outcome. 
Severity was graded using a scale of mild, moderate, or 
severe. Primary and secondary outcomes were admin-
istered by an independent evaluator (DH), who was 
blind to side effects to prevent the risk of bias.

Data analysis
All statistical computing was performed in SPSS Ver-
sion 27. Analyses were performed on the intent-to-treat 
population. All data were explored for outliers and data 
quality using descriptive statistics and graphs prior to 
breaking of the blind and any statistical hypothesis test-
ing. For data on a categorical scale, we used contingency 
tables and histograms, and for data on a continuous scale, 
box-and-whisker plots.

We tested for differences in change from baseline to 
week 12 of the primary efficacy variable, ABC-SW, as well 
as all other variables by calculating the Mann–Whitney U 
test [46]. The Mann–Whitney U test is a nonparametric 
test robust to single gross outliers and does not require 
the data to follow any particular data distribution. We 
compared within subject changes from week 12 to 24 by 
calculating the Wilcoxon signed rank test [80]. In supple-
mentary analyses, we fitted generalized linear regression 
models assuming data to follow an approximate normal 
distribution, which allowed us to include and adjust for 
the baseline value. All tests of statistical hypotheses were 
done on the two-sided 5% level of significance and were 
completed while remaining blind to treatment assign-
ments. After selecting a single primary efficacy vari-
able, we did not adjust for multiplicity of statistical tests. 
However, all raw p-values are provided for any post hoc 
adjustment.

Missing data
In the case of two participants who dropped out after 

week 4, difference scores were calculated for each out-
come measure using the last observation carried forward. 
Two participants dropped out after baseline and were not 
included in the efficacy analysis (see Safety section).

Results
Double‑Blind phase: baseline to week 12
Baseline characteristics were similar between groups, 
with the exception of ABC-SW scores (Table 1). Sixteen 
participants were included in the efficacy analysis (See 
CONSORT diagram; Additional file 2: figure 2). There was 
no statistically significant difference between oxytocin 
and placebo groups on change from baseline to week 12 
on the ABC-SW, our primary outcome (U = 50, median 
placebo change =  − 7; median oxytocin change =  − 3; 
p = 0.055) (Fig. 1). This result did not change in a regres-
sion analysis controlling for baseline differences in ABC-
SW score (F = 3.41, p = 0.088) or after removing the two 
participants who dropped out after week 4 (U = 39.5, 
p = 0.053). In addition, there were no statistically signifi-
cant differences between groups for any of our secondary 
outcomes during the double-blind phase (Table 2).
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Five participants were receiving concomitant psycho-
tropic medications during the study period; three were 
randomized to the placebo group and two were rand-
omized to oxytocin. All doses remained stable through-
out the trial. Among participants in the placebo group, 
psychotropic medications included aripiprazole, tiza-
nidine, mirtazapine, and doxepin (n = 1), clonidine and 
lisdexamfetamine (n = 1), divalproex sodium (n = 1), 
and melatonin (n = 2). Among the participants in the 
oxytocin group, medications included gabapentin, 
oxcarbazepine, and melatonin (n = 1) and levetiracetam 
(n = 1).

Open‑label phase: week 12 to week 24
We further examined within-subject change on all out-
come measures during the open-label phase of the trial 
for each group individually and across all participants. 
There were no statistically significant improvements on 
any outcome measure between week 12 and week 24 in 
either group or across all participants.

Safety
Eighteen participants were included in the safety analy-
sis. Oxytocin was generally well tolerated, and there was 
no statistically significant difference between groups 
in the frequency of AEs (U = 37, p = 0.83). Three par-
ticipants withdrew from the study during the double-
blind phase due to tolerability concerns: one participant 
developed croup and a sinus infection (placebo) and the 
caregivers stopped the study drug on their own; two par-
ticipants developed worsening irritability (one placebo; 
one oxytocin) and withdrew in consultation with the 
principal investigator. A fourth participant dropped out 
after receiving a single dose of study drug (placebo) due 
to concerns unrelated to tolerability (Additional file  2: 
figure 2). There were no serious adverse events (Table 3).

Discussion
The results of this small study do not support the use of 
intranasal oxytocin in PMS. Despite promising preclini-
cal data and a plausible biological rationale, attempts to 
reduce genetic heterogeneity by selecting only partici-
pants with PMS were not adequate to identify a popu-
lation in which oxytocin treatment would show more 
uniform impact on social behavior. The lack of a treat-
ment effect highlights the challenges in translating from 
animal and other preclinical models to humans. While 
preclinical models may show strong construct valid-
ity, outcome measures, dosing, and bioavailability are 
difficult to replicate in humans. Outcome measures in 
preclinical studies have the advantage of enhanced objec-
tivity and quantifying change, while clinical studies in 
ASD rely mainly on parent-report measures which cap-
ture ratings of behavior using relatively broad questions 
and are vulnerable to subjective bias. Further, while most 
of the outcome measures used in this study, including 
the ABC-SW, have been carefully validated in ASD and 

Table 1 Participant baseline characteristics

ABC-SW Aberrant Behavior Checklist Social Withdrawal subscale; DQ developmental quotient; F female; M male; N sample size; SD standard deviation

Sex Placebo (N = 10)
N
F: 5
M: 5

Range Oxytocin 
(N = 8)
N
F: 4
M: 4

Range Total (N = 18)
N
F: 9
M: 9

Range p‑value

Mean (SD) Mean (SD) Mean (SD)

Age (years) 9.8 (3.6) 6–17 6.8 (1.4) 5–9 8.4 (3.2) 5–17 0.055

Baseline ABC‑
SW

20.1 (6.1) 12–30 14 (3.4) 12–20 17.4 (5.9) 12–30 0.012*

Verbal DQ 14.9 (12.8) 4–46 26.4 (21.3) 8–61 20 (17.6) 4–61 0.203

Nonverbal DQ 20.1 (11.7) 4–42 26.1 (13.1) 11–50 22.7 (12.3) 4–50 0.408

Full Scale DQ 17.4 (11.8) 5–44 26.3 (16.7) 10–50 21.4 (14.5) 5–50 0.173
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Fig. 1 Mean scores on the Aberrant Behavior Checklist Social 
Withdrawal subscale across study visits. Bars represent standard error
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Table 2 Comparison across groups of mean change from baseline to week 12

Measure Variable name Number of 
subjects 
placebo

Mean 
change 
placebo

Median 
change 
placebo

Number of 
subjects 
oxytocin

Mean 
change 
oxytocin

Median 
change 
oxytocin

Mann–
Whitney U test 
statistic

Two‑
sided 
p‑value

ABC

Irritability 9  − 5  − 3 7  − 1.71 0 40.5 0.351

Social with‑
drawal

9  − 7.44  − 7 7  − 2.42  − 3 50 0.055

Stereotypy 9  − 2.22  − 1 7 0.57 0 41.5 0.299

Hyperactivity 9  − 8.11  − 6 7  − 2.71 0 42 0.299

Inappropriate 
speech

9  − 1.67 0 7  − 7.14 0 35 0.758

RBS‑R

Stereotypic 
behaviors

9  − 1.67  − 2 7 0.29 0 43 0.252

Self‑injury 9  − 1.22 0 7 1 0 46 0.142

Compulsive 
behaviors

9  − 1.56 0 7  − 0.14 0 38 0.536

Ritualistic 
behaviors

9  − 1.33  − 1 7  − 0.43 0 39 0.47

Sameness 
behaviors

9  − 2  − 1 7  − 0.29  − 1 41 0.351

Restricted 
behaviors

9  − 1.43 0 7 0.14 0 23.5 0.902

Overall score 9  − 8.56  − 3 7 0 0 46 0.142

CGI‑I

Severity 9  − 0.11 0 7  − 0.14 0 30.5 0.918

Improvement* 9 N/A N/A 7 N/A N/A 38 0.536

SSP

Tactile 9 2.56 2 7 1.57 0 29 0.837

Taste/smell 9 1.67 0 7 0.71 0 28.5 0.758

Movement 9  − 0.67 0 7 0.29 0 41.5 0.299

Under‑respon‑
sive/seeks 
sensation

9 4.44 6 7 0.71 2 19 0.21

Auditory filter‑
ing

9 4 3 7 0.29  − 1 16 0.114

Low energy/
weak

9 1.67 2 7  − 0.71 0 24 0.47

Visual/auditory 
sensitivity

9 1.89 3 7  − 0.86 0 13 0.055

Total 9 14.33 8 7 1  − 8 14.5 0.071

Vineland‑II

Communica‑
tion

7 4 0 6 2.83 2 22 1

Daily living skills 7 3.29 1 6 1.17 0.5 14.5 0.366

Socialization 7 3 1 6  − 0.5  − 0.5 12 0.234

Motor 6 1 0 6 3.17 0 20.5 0.699

Adaptive 
behavior com‑
posite

7 3.14 2 6 2 2 21 1

Internalizing 7  − 1.14  − 1 6  − 0.5 0 29 0.295

Externalizing 7  − 1.14  − 1 6  − 0.17 0 25.5 0.534

Maladaptive 6  − 1.33 0 6  − 0.5  − 0.5 18 1

MSEL

Gross motor 7  − 1.57 0 7  − 0.86 0 22 0.805
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intellectual disability, none have undergone rigorous psy-
chometric testing in PMS as of yet.

In terms of dosing, most studies with intranasal oxy-
tocin in ASD continue to use 24 IU, but there have been 
no dose response studies to establish the appropriate dos-
ing for different ages or populations. Differential effects 
may also occur based on acute versus chronic dosing; 
both methods appear to enhance functional connectiv-
ity in adult wild-type mice, but repeated administration 
was associated with reduced social interaction and com-
munication in at least one study [61]. Likewise, differen-
tial effects were evident in a recent clinical trial in adults 
with ASD using proton magnetic resonance spectroscopy 
such that chronic dosing was associated with significant 
reductions in medial prefrontal cortical N-acetylaspar-
tate and glutamate levels, whereas acute dosing was not 
[12]. Equally important, intranasal delivery is fraught 
with challenges, especially for severely impaired popu-
lations who do not reliably follow instructions. Several 
studies have established brain penetrance with intranasal 
oxytocin in ASD based on functional imaging studies, [7, 
8, 26, 37, 79], but participants were mostly adult males 
without comorbid intellectual disability. As such, differ-
ential effects across studies and sample populations may 
well relate to poorly controlled delivery and variability in 
absorption from the olfactory epithelium [1, 64]. How-
ever, this variability does not appear to contribute to tol-
erability issues, and AEs did not differ between groups in 
the present study, a finding consistent with at least one 

large meta-analysis of reported AEs from clinical trials 
with intranasal oxytocin in ASD [20]. Also, worth not-
ing, in the study with Shank3-deficient rats that served 
in part as the basis for this clinical trial, oxytocin was 
administered though intracerebroventricular injection 
and not intranasally [45]. Future studies might also con-
trol for baseline levels of oxytocin as variability in under-
lying oxytocin regulation may contribute to differential 
responses; individuals with lower pre-treatment oxy-
tocin levels may show the greatest improvement in social 
responsiveness [62].

Limitations
Drawing definitive conclusions about the efficacy of oxy-
tocin in PMS based on the results of this study is limited 
by our small sample size, a challenge inherent to studying 
rare disorders. In fact, we ended our trial after three years 
due to challenges with recruitment and perhaps stopped 
before enrolling an adequate sample size to detect small 
effects. Our dosing paradigm also did not account for the 
relatively broad age range, pubertal status, or baseline 
levels of oxytocin. In addition, despite adequate training 
on drug administration, six insufflations twice daily may 
have been challenging for some participants. Compliance 
was monitored using parent report and drug diaries, but 
given that our study drug was administered at home, it is 
possible that doses were missed or not properly admin-
istered. Further, the majority of our measures, including 
the primary outcome, rely on subjective parent reporting 

Table 2 (continued)

Measure Variable name Number of 
subjects 
placebo

Mean 
change 
placebo

Median 
change 
placebo

Number of 
subjects 
oxytocin

Mean 
change 
oxytocin

Median 
change 
oxytocin

Mann–
Whitney U test 
statistic

Two‑
sided 
p‑value

Visual reception 7 0.29 0 7 2.86 4 34 0.259

Fine motor 7  − 0.29 0 7 0.71 0 32 0.383

Receptive 
language

7  − 1.86  − 1 7 1.71 1 35.5 0.165

Expressive 
language

7 0.43 0 7 0.43 0 22 0.805

MCDI

Phrases under‑
stood

7 0.71 0 7 1.43 0 29.5 0.535

Words under‑
stood

7  − 8.14 0 7 7 1 29 0.62

Words pro‑
duced

7  − 8.43 0 7 2.57 0 23 0.902

Early gestures 7 1.86 1 7  − 0.27 0 9 0.053

Later gestures 7 2.71 1 7 0.86 1 26 0.902

Total gestures 7 4.57 1 7 0.57 1 18 0.456
* CGI-I scores reflect results at Week 12 only; Vineland-II domain and composite values are standard scores; MSEL values are age equivalents

ABC Aberrant Behavior Checklist; AE age equivalent; CGI Clinical Global Impression-Improvement Scale; MCDI Macarthur-Bates Communicative Development 
Inventory; MSEL Mullen Scales of Early Learning; RBS Repetitive Behavior Scale-Revised; SSP Short Sensory Profile
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and have not been well validated for use in clinical trials 
in PMS. Finally, preclinical models benefit from genetic 
homogeneity and while all the individuals in our sample 
had SHANK3 haploinsufficiency, it was comprised of 
those with 22q13 deletions of varying sizes (n = 12), in 
addition to SHANK3 sequence variants (n = 6). However, 
the present study was too small to examine subset analy-
ses but this may be a worthy endeavor for future studies.

Conclusions
While the results of this study must be interpreted 
with caution in light of the limitations, intranasal oxy-
tocin does not appear efficacious in improving the 

core symptoms of ASD in children with PMS. Despite 
these findings and inconsistent results across stud-
ies, enthusiasm persists for oxytocin as a treatment 
for ASD symptoms. Future studies must address this 
complex multitude of confounding factors to advance 
oxytocin as a treatment in ASD and related neurode-
velopmental disorders. In addition to genetics, other 
biomarkers, such as using electrophysiology, to strat-
ify sample populations and attempt to predict treat-
ment response have the potential to improve clinical 
trial designs. The development of new outcome meas-
ures, refined and validated for specific genetic forms 
of ASD, may also help. Importantly, outcome measures 
that incorporate objective assessments will be more 
likely to reduce bias. Finally, exploring novel mecha-
nisms for intranasal delivery to enhance absorption in 
addition to clarifying optimal dosing regimens will be 
critical for future trial success. Nevertheless, a genet-
ics-first approach and other methods to limit hetero-
geneity in clinical trial populations remain a promising 
path forward for studies in ASD and related neurode-
velopmental disorders.
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Learning; PMS: Phelan‑McDermid syndrome; RBS‑R: Repetitive Behavior Scale‑
Revised; SMURF: Safety monitoring report form; SSP: Short Sensory Profile; 
Vineland‑II: Vineland Adaptive Behavior Scales.
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Table 3 Reported adverse events from randomization through 
week‑12

Adverse events Placebo Oxytocin

Sedation 2 (20%) 1 (12.5%)

Decreased appetite 2 (20%) 0 (0%)

Periorbital/facial swelling 1 (10%) 0 (0%)

Diarrhea 1 (10%) 1 (12.5%)

Upper respiratory tract infection 2 (20%) 1 (12.5%)

Sleep disturbance 2 (20%) 5 (62.5%)

Increased appetite 1 (10%) 1 (12.5%)

Irritability/agitation 3 (30%) 1 (12.5%)

Cough 0 (0%) 1 (12.5%)

Runny nose/congestion 1 (10%) 0 (0%)

Fever 5 (50%) 2 (25%)

Aggression/self‑injury 1 (10%) 0 (0%)

Infection 3 (30%) 2 (25%)

Elated mood/silliness 1 (10%) 3 (37.5%)

Leg weakness 1 (10%) 1 (12.5%)

Restlessness/hyperactivity 1 (10%) 5 (62.5%)

Bloody nose 0 (0%) 2 (25%)

Stereotypies 2 (20%) 1 (12.5%)

Apathy 0 (0%) 1 (12.5%)

Foot pain 1 (10%) 0 (0%)

Hirsutism 0 (0%) 1 (12.5%)

Tooth pain 0 (0%) 1 (12.5%)

Eczema 1 (10%) 1 (12.5%)

Allergies/asthma 2 (20%) 2 (25%)

Enuresis 1 (10%) 0 (0%)

Accidental injury 1 (10%) 0 (0%)

Seizure 1 (10%) 0 (0%)

Rubbing ears 1 (10%) 0 (0%)

Disinhibited 1 (10%) 0 (0%)

Oppositional behavior 2 (20%) 0 (0%)

Low frustration tolerance 1 (10%) 1 (12.5%)

Tantrums 0 (0%) 1 (12.5%)

Total 41 35
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