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Autistic traits, resting-state connectivity, and
absolute pitch in professional musicians:
shared and distinct neural features
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Abstract

Background: Recent studies indicate increased autistic traits in musicians with absolute pitch and a higher proportion
of absolute pitch in people with autism. Theoretical accounts connect both of these with shared neural principles of
local hyper- and global hypoconnectivity, enhanced perceptual functioning, and a detail-focused cognitive style. This is
the first study to investigate absolute pitch proficiency, autistic traits, and brain correlates in the same study.

Sample and methods: Graph theoretical analysis was conducted on resting-state (eyes closed and eyes open) EEG
connectivity (wPLI, weighted phase lag index) matrices obtained from 31 absolute pitch (AP) and 33 relative pitch (RP)
professional musicians. Small-worldness, global clustering coefficient, and average path length were related to autistic
traits, passive (tone identification) and active (pitch adjustment) absolute pitch proficiency, and onset of musical
training using Welch two-sample tests, correlations, and general linear models.

Results: Analyses revealed increased path length (delta 2–4 Hz), reduced clustering (beta 13–18 Hz), reduced small-
worldness (gamma 30–60 Hz), and increased autistic traits for AP compared to RP. Only clustering values (beta 13–18
Hz) were predicted by both AP proficiency and autistic traits. Post hoc single connection permutation tests among raw
wPLI matrices in the beta band (13–18 Hz) revealed widely reduced interhemispheric connectivity between bilateral
auditory-related electrode positions along with higher connectivity between F7–F8 and F8–P9 for AP. Pitch-naming
ability and pitch adjustment ability were predicted by path length, clustering, autistic traits, and onset of musical
training (for pitch adjustment) explaining 44% and 38% of variance, respectively.

Conclusions: Results show both shared and distinct neural features between AP and autistic traits. Differences in the
beta range were associated with higher autistic traits in the same population. In general, AP musicians exhibit a widely
underconnected brain with reduced functional integration and reduced small-world property during resting state. This
might be partly related to autism-specific brain connectivity, while differences in path length and small-worldness reflect
other ability-specific influences. This is further evidenced for different pathways in the acquisition and development of
absolute pitch, likely influenced by both genetic and environmental factors and their interaction.
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Background
Autism spectrum disorders or conditions (henceforth
“autism”) are more common in people with mathematical
[1], visuospatial [2], musical [3], or “savant” abilities [4],
e.g., rapid mental mathematical calculation [5, 6], calendar
calculation [7], or extreme memory [8, 9]. Autism, a set of
neurodevelopmental condition, is characterized by social
and communication difficulties, alongside unusually re-
petitive behaviors and unusually narrow interests [10],
sensory hypersensitivity, and difficulties in adjusting to un-
expected change (DSM-5, APA 2013).
Absolute pitch (AP), the ability to name or produce a

musical tone without the use of a reference tone [11], is
a common special ability in professional musicians with
a proportion of up to 7–25% [12–14] but less than 1%
[15] in the general population. AP is an excellent model
for the investigation of a joint influence of genetic and
environmental factors on the brain and on human cog-
nitive abilities [16]. Even if the ability is relatively rare,
various studies suggest that the ability might be distrib-
uted more gradually than expected [17–19]. Partial AP
ability seems to be common in professional musicians,
who might in conjunction with good relative pitch
strategies (interval judgements) yield moderate to good
results in absolute pitch tests [18]. An influence of age
of onset of musical training [20–22], ethnicity [12, 14,
22], and type of musical education (label to fixed pitch
vs. label to interval, unfixed to pitch) techniques [12])
suggest environmental aspects in the acquisition of AP.
In contrast, AP often clusters in families, genetically
overlaps with other familial aggregated abilities (e.g.,
synesthesia [23]), and has a higher proportion in autis-
tic people [3, 7, 24–29] and in Williams syndrome [30,
31], both strongly genetic conditions [32–39]. Remark-
ably, some studies on musically untrained children with
and without ASC could even show increased long-term
memory for pitch [3, 27, 28] in ASC children. Finally, a
sensitive or critical period before the age of seven is
considered due to the importance of the early onset of
musical training [14, 16, 20, 40–43]. Relative pitch abil-
ities, i.e., the ability to perceive equal intervals between
musical tones as similar and to be able to judge the
pitch height of tones relative to each other, is very com-
mon in the general population. RP abilities also show
high variability in absolute pitch possessors [18, 44–46].
Musically trained people, however, often exhibit more
explicitly developed RP abilities (e.g., verbal labeling of
musical intervals to a similar proficiency as tone label-
ing of absolute pitch possessors) than less musically
trained or musically untrained people [18].
Recently, two studies have given evidence for height-

ened autistic traits in musicians with AP [47, 48]. Both
AP and autism are associated with similarly altered brain
connectivity in terms of the relation between hyper- and

hypoconnectivity [41, 49–58]. The theory of veridical
mapping [7] tries to explain absolute pitch, synesthesia,
and other abilities like hyperlexia, frequently seen in aut-
istic people or in savant syndrome, with the neurocogni-
tive mechanism of associating homolog patterns of two
perceptual or cognitive structures (veridical mapping).
According to this framework, an enhanced low-level
perception [59, 60] and an increased ability to detect
patterns (“systemizing” [61]) are associated with regional
hyper- as well as global hypoconnectivity in absolute
pitch [49, 51, 62–67] and autism [50, 52, 54, 68]. It is
also noteworthy that autism and abilities like absolute
pitch share excellent attention to detail [40, 69] and a
shift in the direction of higher segregation with reduced
integration in the brain [69]. Investigating disconnection
syndromes or integration deficit disorders, as well as
phenomena with similar brain network characteristics,
may therefore provide insights into the variability of
brain network structure and function and its relation to
perception, cognition, and behavior.
The present study tests if and to what extent AP and

autistic traits share the same neurophysiological network
connectivity. To our knowledge, this study is the first to
investigate (1) the relation of pitch adjustment ability
(active absolute pitch; in contrast to (passive) pitch iden-
tification) and brain as well as behavioral correlates; (2)
the relation of AP ability, autistic traits, and functional
brain connectivity within one study; and (3) graph theor-
etical network parameters in AP during resting-state
electroencephalography. We used graph theoretical ana-
lysis [70, 71] of resting-state EEG data to estimate differ-
ences in global network structure of the brain. We
analyzed three graph theoretical network parameters
reflecting segregation (average clustering coefficient) and
integration (average shortest path length) and the so
called small-worldness (a combination of clustering and
path length) [70, 71]. To our knowledge, this is also the
first study investigating the global average connectivity
parameters over the whole brain between AP and RP
(relative pitch) musicians, while prior studies [49, 51]
have focused on parameters for single regions (e.g., de-
gree, single node clustering, and single node characteris-
tic path length). We expected higher autistic traits,
higher path length (reduced integration), and lower clus-
tering (underconnectivity) for AP and an interrelation
among those variables. Further, we expected these differ-
ences to specifically occur in low- (delta, theta) vs.
high-frequency (beta) ranges for integration vs. segrega-
tion, respectively.

Methods
Participants
Thirty-one AP musicians (16 female) and 33 RP musi-
cians (15 female) participated in the study. One male
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RP participant had to be excluded from the EEG ana-
lysis because of missing EEG data. Participants were
recruited via an online survey using UNIPARK software
(https://www.unipark.com/) and primarily were stu-
dents or professional musicians at the University for
Music, Drama and Media, Hanover. Four APs and two
RPs were amateur musicians. An online pitch identifi-
cation screening (PIS) consisting of 36 categorical,
equal-tempered sine waves in the range of three octaves
between C4 (261.63 Hz) and B6 (1975.5 Hz) was used
to allocate the participants to the groups (AP > 12/36
tones named correctly, else RP). Some of our subjects
reported to have absolute pitch (from our experience,
professional musicians usually know whether they
themselves have absolute pitch or not) and performed
like absolute pitch possessors in the absolute pitch ad-
justment test in the lab (see the “Pitch adjustment test”-
section), despite their comparable weak performance in
the pitch identification test online. Their weak perform-
ance in the online test might have resulted from tech-
nical problems of personal subjects’ devices to present
the tones (reported during personal communication).
The online test was also performed under uncontrolled ex-
perimental condition. Additionally, 2 participants had 13
and 21 correct answers, respectively, in the online pitch-
naming test but performed weakly in the pitch adjustment
test (and reporting not to have absolute pitch) and were
re-assigned to the RP group. Musicians without “real” abso-
lute pitch occasionally yield above chance results in
pitch-naming tests, which might be caused by the use of
experience-based strategies in the test (e.g., having pitch of
empty strings in string players or starting tones of famous
melodies as comparison in mind) [18].
There is currently no consensus about a cutoff in

terms of percentage of tones named correctly to be de-
fined as absolute pitch possessor. To verify the decision
for the cutoff, we compared performances in pitch
naming and adjustment by inspecting scatter plots. For
the clear difference between AP and RP in the pitch ad-
justment test, where RP strategies do not seem to help
(personal reports after test), we decided to take a cutoff
of 12/36 tones named correctly and not a higher, e.g.,
50% or 80% cutoff. However, the cutoff for the pitch-
naming test may not reflect a suitable cutoff for other
samples. Four AP were non-native German speakers
and had the choice between a German and an English
version of the experiments. One AP reported taking
mirtazapine. None of the participants reported any his-
tory of severe psychiatric or neurological conditions.
The AP group consisted of 15 pianists, 9 string players,
3 woodwind instrument players, 2 singers, and 2 brass
players; the RP group consisted of 13 pianists, 4 string
players, 6 woodwind instrument players, 3 bassists/gui-
tarists/accordionists, 3 singers, 1 drummer, and 3 brass

players. Handedness was assessed by Edinburgh Hand-
edness Inventory [72]; one AP was left handed, all other
APs were consistently right handed, three RPs were left
handed, and two RPs were ambidextrous. This study
was approved by the local Ethics Committee at the
Medical University Hannover. All participants gave
written consent.

Setting
The study was divided into three parts: the online sur-
vey and two appointments in the lab at the Institute for
Music Physiology and Musicians’ Medicine of the Uni-
versity for Music, Drama and Media, Hannover. While
the online survey was used for the pitch identification
screening and diagnostic as well as demographic ques-
tionnaires (see below), general intelligence, musical
ability, pitch adjustment ability, and resting-state EEG
were assessed in the lab (see Table 1). Four further ex-
periments were conducted within the same two ses-
sions at the lab and are reported elsewhere [73, 74].
Raven’s Standard Progressive Matrices [75] and “Zah-
lenverbindungstest” (ZVT, [76]) were used to assess
general non-verbal intelligence and information pro-
cessing speed, respectively. Musical ability and musical
experience were controlled for with the use of AMMA
(Advanced Measures of Music Audiation [77]), Musical
Sophistication Index (GOLD-MSI, [78]), and estimated
total hours of musical training within life span (house
intern online questionnaire).

Experiments and material
Pitch adjustment test
Absolute pitch ability was measured by using two dif-
ferent absolute pitch tests: the pitch identification
screening (PIS) during the online survey mentioned
above and a pitch adjustment test (PAT) based on
Dohn et al. [79]. Participants were given a maximum of
15 s to adjust the frequency of a sine wave with random
start frequency (220–880 Hz, 1 Hz steps) and told to try
to hit the target note (letter presented central on PC
screen, e.g., “F#/Gb”) as precisely as possible without
the use of any kind of reference. Online pitch modula-
tion was programmed according to Dohn et al. [79] and
provided by turning a USB controller (Griffin Power-
Mate NA16029, Griffin Technology, 6001 Oak Canyon,
Irvine, CA, USA). Resolution of the PowerMate was set
to 10 cents vs. 1 cent (if pressed during turn of the
wheel) for individual choice between rough and fine
tuning. To confirm their answer, participants were
instructed to press a button on a Cedrus Response Pad
(Response Pad RB-844, Cedrus Corporation, San Pedro,
CA 90734, USA) to automatically proceed with the next
trial. If no button was hit, the final frequency after 15 s
was taken. In both cases, the intertrial interval (ITI)
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was set to 3000 ms. The total test consisted of 108
target notes, presented in a semi-random order in 3
blocks of 36 notes each (3 × 12 different notes per
block) with individual breaks between the blocks. The
final or chosen frequencies of each participant were
compared to the nearest target tone (< 6 semitones/600
cent), as participants were allowed to choose their oct-
ave of preference. EEG was measured during the PAT
but will be reported elsewhere. For each participant,
the mean absolute derivation (MAD (1), [79]) from
target tone:

MAD ¼

XNadjustment

i¼1

j Ci j

N adjustment
ð1Þ

is calculated as the mean of the average absolute devi-
ations ci (2) of the final frequencies to the target tone
(referenced to a 440 Hz equal-tempered tuning).
MAD reflects the pitch adjustment accuracy of the

participants. The consistency of the pitch adjustments,
possibly reflecting the tuning of the pitch template [79],
is then estimated by taking the standard deviation of the
absolute deviations (2).

SDfoM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNadjustment

i¼1

Ci−MADð ÞÇ

Nadjustment−1

vuuuut ð2Þ

For regression analyses (see below), we performed a
z-standardization of the MAD (Z_MAD, (3)) and
SDfoM (Z_SDfoM, (4)) values relative to the mean and

SD of the non-AP group, as originally proposed by
Dohn et al. [79].

Z MADi ¼ MADi−μ MADð ÞNon−AP

σ MADð ÞNon−AP
ð3Þ

Z SDfoMi ¼ SDfoMi−μ SDfoMð ÞNon−AP

σ SDfoMð ÞNon−AP
ð4Þ

Autistic traits
Autism traits were assessed during the online survey using
a standardized Adult Autism Spectrum Quotient (AQ,
[80]; German version by C.M. Freiburg, available online:
https://www.autismresearchcentre.com/arc_tests). It con-
sists of 50 items within 5 subscales (attention to detail, at-
tention switching, imagination, social skills, and
communication). One point is given for each item with a
mildly or strongly agreement with the autistic-like symp-
toms (half of the items were negatively poled; the max-
imum AQ score therefore is 50).

EEG resting state
EEG resting-state data was acquired immediately before
the PAT at the beginning of the experimental session
using 28 scalp electrodes (sintered silver/silver chloride;
Fp1, Fp2, F3, F4, FC3, FC4, C3, C4, CP3, CP4, P3, P4,
F7, F8, FT7, FT8, T7, T8, TP7, TP8, P7, P8, O1, O2, Oz,
Fz, Cz, Pz) placed according to the international ex-
tended 10–20 System with an electrode cap by EASY-
CAP (EASYCAP GmbH, Herrsching, Germany; http://
www.easycap.de). A 32-channel SynAmps amplifier
(Compumedics Neuroscan, Inc., Charlotte, NC, USA)
and the software Scan 4.3 (Compumedics Neuroscan)

Table 1 Participants’ characteristics

AP (n = 31) RP (n = 33) t test

Mean SD Range Mean SD Range

Age (years) 25.13 9.2 17–58 24.0 7.02 17–57 t(56.1) = − 0.549; p = 0.585

SPM (IQ) 110.4 16.4 73–132.25 114.41 13.14 86.5–134.5 t(57.5) = 1.073; p = 0.288

ZVT (IQ) 120.76 13.14 101.5–145 120.61 13.69 97–143.5 t(61.9) = − 0.045; p = 0.964

Hours main instrument (h) 11,961.4 9212 1642.5–39,785 13,735.61 17,125.89 1606–77,617.25 t(49.7) = 0.520; p = 0.605

AMMA total 64.74 6.26 53–78 63.244 7.03 46–76 t(61.8) = − 0.90; p = 0.370

AMMA rhythmic 32.81 2.82 28–39 31.97 3.22 23–37 t(61.7) = 0.272; p = 0.2721

AMMA tonal 31.9 3.74 25–39 30.27 3.8 22–37 t(61.9) = −1.728; p = 0.089

MSI 208.65 17.59 161–234 210.79 15.12 185–246 t(59.3) = 0.521; p = 0.604

PIS 28.5 6.03 15–36 5.30 4.33 0–21* t(52.2) = − 17.37; p < 2.2e−16

Starting age (years) 5.97 2.97 2–17 7.12 2.22 3–12 t(55.4) = 1.751; p = 0.086

Age, non-verbal IQ (SPM, IQ values), information processing capacity (ZVT, IQ values), musical training (total hours during life span on main instrument in hours),
musicality (AMMA total, raw score on test; AMMA tonal, tonal raw score; AMMA rhythmic, rhythmic raw score; MSI, questionnaire, sum score; higher values
indicate higher musicality), and online pitch identification screening (PIS, sum of correctly named tones) for each group. No group differences apart from
performance on pitch-naming test (PIS) were found
*Two RPs reported not having absolute pitch but reached a screening score of 13 and 21, respectively. Because of this and their weak performance in the pitch
adjustment test, the subjects were assigned to the RP group. Significant group differences are indicated in italics
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were used to record the data. The remaining two bipolar
channels were used for the vertical and horizontal elec-
trooculogram with electrodes placed above and below
the right eye and approximately 1 cm outside of the
outer canthus of each eye, respectively. Two further
electrodes were placed on the left and right mastoids as
a linked reference. The ground electrode was placed be-
tween the eyebrows directly above the nasion on the
forehead. Abralyth 2000 abrasive chloride-free electro-
lyte gel (EASYCAP GmbH, Herrsching, Germany;
http://www.easycap.de) was used to keep impedances
below 5kΩ. Participants were seated in a comfortable
chair in front of a PC screen and were instructed to let
their mind wander around while looking at a fixation
cross (eyes open resting state, EO) or keeping their eyes
closed (eyes closed resting state, EC) for 5 min each. All
participants underwent both resting-state conditions and
started with the 5-min eyes open condition followed by
the 5-min eyes closed. Start (button press) and end of
the resting-state period were programmed within Psy-
choPy [81] by sending triggers via a parallel port to the
EEG system. A sampling rate of 1000 Hz was used com-
bined with an online bandpass filter between 0.5–100 Hz
and a Notch filter at 50 Hz. EEG was recorded in AC
(alternating current) mode and with a gain of 1000.

EEG preprocessing and analysis
Preprocessing
All preprocessing steps were conducted using MATLAB
(MATLAB Release 2014a, MathWorks, Inc., Natick,
MA, USA) and the toolboxes EEGLAB [82] and Field-
Trip [83]. EEG raw data was first re-sampled to 512 Hz
sampling rate and bandpass filtered to 1–100 Hz.
Artifact removal was administered using both raw data
inspection of continuous data and independent compo-
nent analysis (ICA, algorithm: binica) within EEGLAB
for each participant’s data individually. ICA components
containing vertical or horizontal eye movements, blink-
ing, heartbeat, muscular activity, or other artifacts were
removed from the data by inverse ICA. After that, seg-
ments still containing the abovementioned artifacts were
removed manually. Defective or highly noisy electrodes
were interpolated using spherical interpolation [84] im-
plemented in EEGLAB (5 participants, 1–2 electrodes
each). All statistical analyses were repeated under the
exclusion of participants with interpolated electrodes as
well as non-native German speakers and the participant
which reported to take mirtazapine. Direction and
significance of effects were not affected by the exclu-
sions; therefore, all participants were included into the
final analyses. Afterwards, the artifact-clean data was
exported to FieldTrip for the connectivity and network
analysis (next steps).

Connectivity—weighted phase lag index
The calculation of functional connectivity was done using
MATLAB scripts (see: https://github.com/rb643/fieldtrip_
restingState/blob/master/rb_EEG_Conn.m). First, 4-s
epochs (non-overlapping) were extracted from the
artifact-clean data. Epochs that still contained artifacts
were removed for each subject (0–5 epochs of 75 epochs
per subject and resting-state condition). Second,
multi-taper Morlet fast Fourier transformation was used
to extract frequency bands (delta 2–4Hz, theta 4–7Hz,
alpha 7–13Hz, beta 13–30Hz, gamma 30–60Hz). For
delta and theta, a single taper (Hanning window) was
used. On the contrary, for alpha, beta, and gamma, mul-
tiple tapers (discrete prolate spheroidal sequences, DPSS)
were taken. During the multi-tapering of alpha, beta, and
gamma, spectral smoothing was applied (+ − 1, 2, 4 Hz, re-
spectively). Finally, pairwise connectivity values for each
electrode site were calculated per participant and stored
in a connectivity matrix for each frequency band separ-
ately. Weighted phase lag index [85] was chosen as the
connectivity measure, as phase-based connectivity mea-
sures compared to coherence and phase synchronization
measures are less sensitive to volume conduction in the
brain [86, 87] (cited by [88]), i.e., spurious connectivity be-
tween the two regions of interest caused by a common
source of activity or a common reference [89] and usually
leads to connectivity values with phase lags of zero or pi
(if the two sites are on opposite sides of the dipole) [90].
PLI (5) is an index that quantifies the asymmetry of the
distribution of instantaneous phase-differences ΔΦ be-
tween the signals x and y, by averaging the sign (sgn) of
the imaginary components (imag) of the cross-spectrum
(Sxyt) at time point t [90].

PLIxy ¼j n−1
Xn

t¼1

sgn imag Sxyt
� �� � j ð5Þ

The distribution is centered around 0 mod pi; there-
fore, an asymmetric distribution shows a non-zero phase
lag. Stam et al. [89] argue that a non-zero phase lag can-
not be caused by a volume conduction or a common ref-
erence, as the latter works instantaneously. PLI takes
values between 0 and 1, where 0 indicates no phase
coupling (or a coupling with a 0 mod pi phase differ-
ence) and 1 indicates a perfect coupling at the phase lag
of ΔΦ. Because of the absolute values taken in Eq. (1),
PLI does not give information about which signal is
leading [89]. PLI has been shown to be superior in de-
tecting true synchronization and in being less influenced
by common source activity and electrode montage sys-
tems than phase coherence (PC, [91]), both in computer
simulations and on real EEG and MEG data [89]. Fur-
thermore, PLI exhibits a similar amount of long- to
short-distance connections in an investigation of beta
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band coupling in the Alzheimer data [89, 92] which was
shifted towards short-range connections implying vol-
ume conduction when using PC [89]. As the aim of this
paper is to compare graph theory-based network mea-
sures that especially quantify segregation versus integra-
tion in the brain (see the “Network analysis—graph
theory” section), the use of PLI is to be preferred to pre-
vent the distortion of the network parameters by volume
conduction [93, 94]. The extension of PLI, weighted PLI
(wPLI, (6) [85]),

wPLIxy ¼
n−1

Xn

t¼1

j imag Sxyt
� � j sgn imag Sxyt

� �� �

n−1
Xn

t¼1

j imag Sxyt
� � j

ð6Þ

weights the obtained phase leads or lags by the magni-
tude of the imaginary component (imag) of the
cross-spectrum (Sxyt). This reduces the influence of add-
itional noise sources [85, 90]. Weighted phase lag index
[85] therefore is an advancement of phase lag index
(PLI, [89]) and a suitable measure to detect the true con-
nectivity between the regions of interest [89], as it ig-
nores zero- and pi-phase lag.

Network analysis—graph theory
Graph network analyses were conducted using Brain
Connectivity Toolbox (BCT, [95]) in MATLAB. Graph
theory is a branch of mathematics that deals with the
abstract representation of networks as graphs, i.e., a
system of n nodes and k edges (connections) between
the nodes. Increasingly, network science is being ap-
plied to a range of neuroanatomical and physiological
data (e.g., [49, 51, 96–101]) and at different scales of
interest (e.g., neurons/populations of neurons, cortical
areas, electrode sites; see [70, 95, 102–104] for an over-
view). In the present study, the pairwise connectivity
measures for each frequency band and participant were
stored in a 28 × 28 (channel by channel) matrix. There-
fore, electrode sites are defined as the nodes and wPLI
indexes of the electrode pairs within the matrix as
edges. This was done in two steps: First, to construct
adjacency matrices for graph analyses, minimal span-
ning tree (MST: [101]) was used as the threshold start-
ing point for building binary networks at various
densities. The density of a network relates to the frac-
tion of edges present in the network compared to the
maximum possible number of edges. MST was chosen
to ensure that across participants, we were comparing
network with similar numbers of nodes (e.g., differen-
tial thresholding without MST can lead to unconnected

nodes and result to networks of different sizes). After-
wards, we investigated the network properties over a
range of densities (0.036, 0.079, 0.106, 0.132, 0.159,
0.212, 0.238, 0.265, 0.291; percent of all possible con-
nections, i.e., ten thresholding levels) by stepwise add-
ing the highest remaining edges. Instead of picking one
subjective network threshold, we decided to use equally
spaced thresholds within a biologically plausible range
to ensure that any findings were consistent across
thresholds (see [101]). The process of thresholding it-
self, however, is still a highly debated issue without con-
sensus. Finally, thresholding leads to ten adjacency
matrices, for each frequency band and participant.
To estimate the differences in global network struc-

ture of the brain, we analyzed two graph theoretical
network parameters reflecting segregation (average
clustering coefficient) and integration (average shortest
path length) of the brain [70, 71, 105, 106]. It has been
shown in a variety of simulations and network analyses
of imaging data that the human brain, among other
biological systems and animal brains [103, 107], ex-
hibits a small-world architecture [103], which leads to
an advantage of efficient information transfer while
keeping the anatomical costs low [108, 109]. Compared
to the two studies by Jäncke et al. [49] and Loui et al.
[51], the present investigation did use network mea-
sures averaged over the whole brain and compared to
those of a random network, instead of individual values
per region. This is advantageous, as the vast variability
of individual coherence within a network is reduced to
one value per parameter and participant that reflects
the small-worldness or efficiency of a brain network
relative to a random or chaotic network [70, 92, 95,
102–104]. By definition [70, 107, 108], small-worldness
σ (7) is characterized by a C, which is much higher than
that of a random network (γ = C real/C random > > 1),
but has a comparable short path length (λ = L real/L
random ≈ 1).

σ ¼ γ
λ
¼ Cw

real=C
w
random

Lwreal=L
w
random

ð7Þ

Here, the clustering coefficient Ci (8) of a node i is de-
fined as the weighted average amount of (9) triangles twi
around it, i.e., the sum of connections between the
neighbors of a node i divided by the total amount of
possible connections among its neighbors:

Ci ¼ 1
n

X
i∈N

2twi
ki ki−1ð Þ ð8Þ

twi ¼ 1
2

X
j;h∈N

wijwihwjh
� �1

3 ð9Þ

The global clustering coefficient (10) of a weighted

Wenhart et al. Molecular Autism           (2019) 10:20 Page 6 of 18



association matrix Cw denotes the average clustering
coefficient summed over all nodes i ∈N in a network and
is interpreted as a measure of segregation of the network.

Cw ¼ 1
n

X
i∈N

Ci ð10Þ

On the other hand the characteristic path length Li
(11) of a node i is defined as the average pairwise dis-
tance dw

ij (12) between the node i and any other node j

in the weighted (w) network:

Li ¼ 1
n

X
i∈N

P
j∈N ; j≠id

w
ij

n−1
ð11Þ

dw
ij ¼

X
auv∈gwi↔ j

f wuvð Þ ð12Þ

The global average path length (13) is then calculated
by taking the average of the characteristic path length of
all nodes i ∈N in the network and is interpreted as a
measure of integration of the network.

Lw ¼ 1
n

X
i∈N

Li ð13Þ

As both γ and λ reflect the underlying brain network
structure relative to a random network of the same
density (and degree distribution) and influence the cal-
culation of small-worldness, we chose to look at these
parameters separately, that is, because we were specific-
ally interested in the potentially differential relation of
segregation and integration in the brain. Various authors
have shown that long-range connections (integration)
are more associated with synchronization in
low-frequency bands, whereas short-range connectivity
is mainly processed within the beta band (e.g., [110]).

Statistical analysis
All statistical analyses were done using the open-source
statistical software package R (version 3.5¸https://www.r-
project.org/).
We expected group differences between AP and RP re-

garding AQ scores, MAD (PAT), PIS (sum of correctly
identified tones), and network parameters γ and λ (in
beta, delta, and theta band). Additional unexpected re-
sults obtained in other frequency bands and network pa-
rameters are also reported. In order to correct for
multiple comparisons across frequency bands, ten
thresholds each, and various network parameters, only
significant results within at least two successive thresh-
olds were considered significant. We are aware that the
common procedure to correct for multiple comparisons
would be the application of false discovery rates or simi-
lar. However, we did not consider this reasonable for the

following arguments: First, there is no clearly defined
consensus on the number or level of thresholding. Sec-
ond, it is not entirely clear how successive thresholds re-
late to each other and resulting graph theoretical
measures [59] and if they can be assumed independent.
The latter seems unlikely as the next higher density was
always retrieved in taking the smaller network and add-
ing connections. Third, small-worldness cannot be
viewed independent from path length and clustering as
its calculation depends on both of them (see the “Net-
work analysis—graph theory” section). Thus, our ap-
proach mimicked a cluster-based approach whereby we
only considered results significant if they replicated in at
least two successive thresholds [101]. Results were ob-
tained using t tests and non-parametric equivalents
when applicable. Intercorrelations between the variables
were investigated to further explore the interrelation of
autistic traits, absolute pitch performance, and network
structure using regression and bivariate correlations. Fi-
nally, the network parameters λ and γ, the AQ score,
and the age of beginning to play a musical instrument
(as a covariate) were used to predict PIS and PAT per-
formance within the sample using multiple regressions
and AQ and AP performance to predict network
parameters.

Results
Behavioral performance and autism traits
The Welch two-sample t tests revealed significant lower
absolute deviations from target tone (MAD; t(43.7) =
15.614; p < 2.2e−16) and lower deviations from individ-
ual mean deviation, i.e., interpreted as pitch template
(SDfoM; t(40.9) = 12.145; p = 3.788e−15) for absolute
pitch compared to relative pitch possessors (Table 2).
Having AP was further associated with more autistic
traits (AQ; t(60.3) = − 2.501; p < 0.015) and (marginally)
an early start of musical training (starting age; t(55.4) =
1.751; p < 0.086). For AQ, only the subscale “imagin-
ation” reached significance (t(57.4) = − 4.287, p < 6.997e
−05) with higher values for AP, while “communication”
(t(55.3) = − 1.977, p = 0.053) and “attention to detail”
(t(61.6) = − 1.776, p = 0.081) were marginal and “social
skills” (t(60.9) = − 1.145, p = 0.257) and “attention
switching” (t(62.0) = 1.012, p = 0.316) were not
significant.

Network analysis
The Welch two-sample t tests (p < 0.05, uncorrected) re-
vealed higher average path length λ for AP compared to
RP within the delta band (2–4 Hz) for both, eyes open
(EO) and eyes closed (EC), resting-state conditions and
at least two thresholds each. Lower path length values
for AP were found in alpha (7–13 Hz) and beta (13–18
Hz) eyes open condition for one threshold each but did
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not reach significance (p < 0.10; see Fig. 1). Analysis of
clustering coefficient γ yielded lower clustering for AP
in EO delta (p < 0.05) for one threshold and EO beta
(p < 0.10) for two neighboring thresholds. RP exhibited
higher clustering for a single threshold in EO theta (p <
0.10). Small-worldness σ was widely reduced in AP
within EC gamma, EC alpha, and EO alpha with signifi-
cant (p < 0.05) or marginally significant (p < 0.10) group
differences across one or two thresholds each (Fig. 1).
No significant higher thresholds were found for AP.
In general, significant and marginally significant results

were spread widely across different thresholds (see
Fig. 1). Only significant results appearing on at least two
thresholds in the same frequency band were included for
further analyses (multiple regression). Of those, the
threshold (T) with the highest effect size of neighboring
significant results was taken: clustering γ EO beta (T =
0.2910), small-worldness σ EC gamma (T = 0.1322), and
path length λ EC delta (T = 0.2116). Path length EO
delta (T = 0.0357) was not taken into account because of
correlation with path length EC delta (T = 0.2116).

Prediction of absolute pitch performance
Multiple regression analysis was used to predict AP per-
formance in pitch naming (PIS) and pitch adjustment
(PAT). A multiple regression predicting PIS performance
by autistic traits (AQ; beta = 0.892, p < 0.0001), cluster-
ing (C_EO_b10; beta = − 66.074, p < 0.0002), path length
(L_ECd10; beta = 76.909, p < 0.008), and small-worldness
(ECg4; beta = − 6.612, p < 0.0325) explained 44% of the
variance (R2 = 0.44, R2

adjusted = 0.401; F(4,57) = 11.22,
p < 9.92e−17). PAT performance was predicted by the
same predictors plus the age of beginning of musical
training (starting age) and explained 38% of the variance
(R2 = 0.380, R2

adjusted = 0.326; F(5,57) = 6.991, p < 3.736e
−05). Here, AQ (beta = − 0.089, p < 0.004), clustering
(beta = 6.775, p < 0.004), and small-worldness (beta =
0.946, p < 0.023)) significantly contributed to the predic-
tion, while the age of the beginning of musical training
(beta = 0.130, p < 0.053) and path length (beta = − 7.006,
p < 0.070) remained marginally significant. Bivariate
pearson correlations among the variables are listed in

Table 3. Post hoc mediation analysis revealed no signifi-
cant mediation of the influence of network structure
(graph theoretical parameters) on absolute pitch per-
formance (MAD) by autistic traits (p > .05 for all
comparisons).

Prediction of network parameters
To further investigate the interrelation between AP,
autistic traits, and network connectivity, we calculated
the general linear models to predict network connectiv-
ity (L, C, SW) differences obtained before by a combin-
ation of AP performance and AQ. Different models
were compared using R2, R2

adjusted, and information
criteria (AIC). Separate models are shown for active
(PAT) and passive (PIS) AP performance as for their
high collinearity. Only clustering obtained a better pre-
diction by a joint model of AQ and AP performance
(active and passive on separate models because of inter-
correlation) with AQ as a significant predictor. While
the inclusion of AQ scores did not improve the prediction
of path length and small-worldness (see Table 4), it was pre-
dictive for clustering coefficients in the beta range in each
joint model with either MAD (F(2,60) = 6.011, p < 0.004;
R2 = 0.167, R2adjusted = 0.139; βAQ = 4.06e−3, p < 0.014;
βMAD = 2.07e−4, p < 0.004) or PIS performance (F(2,59) =
6.889, p < 0.002; R2 = 0.189, R2adjusted = 0.162; βAQ = 4.44e
−3, p < 0.009; βMAD =− 2.62e−3, p < 0.0041). Both models
were superior compared to a prediction of network con-
nectivity by AP performance alone, even though the bivari-
ate correlation between AQ and clustering did not reach
significance (see the previous section). Post hoc mediation
analysis revealed no significant mediation of the influence
of absolute pitch ability (MAD) on network parameters by
autistic traits (p > .05 for all comparisons).

Post hoc analysis: single connection statistics
To assess single connection differences in the beta fre-
quency band, permutation statistics (npermutations =
10,000) across groups were evaluated post hoc. To ob-
tain these, raw matrices in the relevant frequency bands
(significant results) were z-standardized individually
and permutation group statistics (FDR corrected)

Table 2 Group differences

AP (n = 31) RP (n = 33) t test*

Mean SD Range Mean SD Range

AQ 20.48 6.05 10–36 16.88 5.44 6–27 t(60.3) = − 2.501; p = 0.015

MAD 41.37 36.49 9.8–200.57 296.84 86.12 91.04–467.52 t(43.7) = 15.614; p < 2.2e−16

SDfoM 52.31 44.96 7.41–235.69 329.77 122.77 134.37–811.73 t(40.9) = 12.145; p = 3.788e−15

Starting age 5.97 2.97 2–17 7.12 2.22 3–12 t(55.4) = 1.751; p = 0.086

Age, nonverbal IQ (SPM), information processing capacity (ZVT), musical training (total hours during life span on main instrument), musicality (AMMA; MSI), and
online pitch identification screening (PIS) for each group.
*One RP has reported himself not having an absolute pitch but reached a screening score of 13. Because of this and the weak performance in the pitch
adjustment test, the subject was assigned to the RP group. Significant group differences are indicated in italics. Welch two-sample t test
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Fig. 1 Multiple comparisons (Welch two-sample t tests) across frequency bands, thresholds, and eyes closed vs. eyes open RS between AP and
RP. Matrix cells contain p values (uncorrected) and are colored according to Cohen’s d values. Blue cells indicate higher SW (small-world), Lrand
(path length compared to random network) and Crand (clustering compared to random network) for AP compared to RP. Red cells show higher
parameters for RP. Significant results (*p < 0.05; **p < 0.01; ***p < 0.001) and tendencies (“.”p < 0.10) are marked
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performed across groups using custom MATLAB
scripts. An unstandardized comparison was provided as
well. While the former reflects the relative importance
of the connections within the participants’ networks be-
tween the groups, the latter shows group differences in
the absolute wPLI. Results revealed overall increased
wPLI values for AP in a network comprising mainly the
left frontal and parietal regions (especially nodes F7, F3,
F4, P3; see Table 5 for anatomical correlations) com-
bined with lower connectivity within and between the
bilateral temporal regions (FT7–T8, FT7–T7, FT8–T8;
unstandardized results). Relative to their own networks
(z-standardized participants matrices), APs exhibited a
reduced connectivity compared to RP between the left
FT7 and various sites along frontal-temporal-occipital

electrodes (F8, T8, TP8, P8, P3) in the right hemi-
sphere, especially again within and between the bilat-
eral temporal regions (FT7–T8, FT7–T7, FT8–T8).
The only significant higher connections relative to their
own network for AP were found between F7, F8, and
P7. Figure 2 (brain nets created using the MATLAB
toolbox BrainNet Viewer [111]) shows Cohen’s d effect
size values for all pairs of electrodes between groups in
separate matrices for z-standardized vs. unstandardized
raw connectivity matrices. The most pronounced differ-
ences that were found in both standardized and unstan-
dardized (relative) comparisons comprise a reduced
interconnection between bilateral auditory cortices
(FT7–T8, FT7–T7, FT8–T8) as well as higher
frontal-parietal connectivity (F7–F8, F8–P7) for AP.

Table 3 Bivariate correlations between variables of interest

Correlation coefficient (Pearson)

p value PIS 0.38** − 0.91*** − 0.85*** −0.23 0.35** −0.30* − 0.28*

0.002** AQ − 0.28* − 0.25* 0.025 0.13 0.20 0.022

< 0.001*** 0.024* MADa 0.93*** 0.30* −0.27* 0.28* 0.31*

< 0.001*** 0.045* < 0.001*** SDfoMa 0.25 −0.21 0.25 0.21

0.074 . 0.844 0.017* 0.053 Start age 0.018 0.22 0.10

0.005** 0.315 0.033* 0.094 0.887 λ EC delta 0.08 −0.23

0.017* 0.109 0.026* 0.051 0.079 0.534 γ EO beta −0.044

0.028* 0.866 0.013* 0.100 0.431 0.075 0.731 σ EC gamma

Pearson correlations between variables of interest (network parameters: selected bands and thresholds)
*Significant correlation coefficients
aVariables were z-standardized to the mean and SD of the non-AP population

Table 4 Comparison of models predicting network parameters by AP and AQ

Predictors (β) Comparison of models

γ EO beta Intercept MAD PIS AQ F (df) p value R2 R2adjusted AIC

Model 1 3.54e−1*** 2.07e−4** – 4.06e−3* 6.011 (2,60) < 0.004** 0.167 0.139 − 145.45

Model 2 4.383–1*** 1.58e−4* – – 5.232 (1,60) < 0.026* 0.078 0.064 − 141.13

Model 3 4.25e−1*** – − 2.62e−3** 4.44e−3** 6.889 (2, 59) < 0.002** 0.189 0.162 − 146.01

Model 4 4.96e−1*** – − 1.83e−3* – 6.009 (1,60) < 0.017* 0.091 0.076 − 140.91

σ EC gamma Intercept MAD PIS AQ F value p value R2 R2adjusted AIC

Model 1 5.4e−1* 1.02e−3* – 5.25e−3 3.378 (2,60) < 0.041* 0.101 0.071 74.09

Model 2 6.49e−1*** 9.57e−4* – – 6.504 < 0.013* 0.096 0.081 72.43

Model 3 8.08e−1*** – − 1.11e−2* 9.30e−3 2.981 (2,59) < 0.058 0.092 0.061 73.53

Model 4 9.56e−1*** – − 9.41e−3* – 5.06 (1,60) < 0.028* 0.078 0.062 72.48

λ EC delta Intercept MAD PIS AQ F value p value R2 R2adjusted AIC

Model 1 1.82*** − 8.34e−5 – 4.40e−04 2.433 (2,60) 0.096 0.075 0.044 − 205.34

Model 2 1.83*** − 8.88e−5* – – 4.736 (1,61) < 0.033* 0.072 0.057 − 207.14

Model 3 1.79*** – 1.30e−3** − 1.29e−5 4.228 (2,59) < 0.019* 0.125 0.096 − 204.45

Model 4 1.79*** – 1.29e−3** – 8.6 (1,60) < 0.005** 0.125 0.111 − 206.45

Parameters, significance (F statistics), and comparison of different models. Models are compared using R2, R2adjusted, and AIC (Akaike information criterion). Smaller
AIC and higher R2 indicate superior models. *p < 0.05, **p < 0.01, ***p < 0.01 (uncorrected)
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These connections therefore not only exhibit a group
difference on absolute wPLI values, but also play a dif-
ferent role relative to the other connections in the par-
ticipants’ networks.
Rough anatomical associations of electrode positions,

taken from Koessler et al. [112], are summarized in
Table 5. However, it must be clearly said that graph the-
oretical accounts and single connection permutation
tests are completely different techniques and cannot be
compared directly. This is because in the course of
graph theoretical analysis, thresholds have to be applied
on the participants’ raw matrices, leading to a reduced
number of total connections. Thus, the connections fed
into the graph analysis also highly depend on the
participant-specific order of connection weights and can

have a high regional variability despite producing simi-
larly high or low network parameters.

Discussion
The results of the present study underline a possible
interrelation between autistic traits, brain connectivity,
and absolute pitch ability. We investigated the EEG-
resting state connectivity using a graph theory
approach in professional musicians with and without
absolute pitch, the Autism Spectrum Quotient [80], and
a test of pitch naming and pitch adjustment ability. The
analyses revealed higher autistic traits, higher average
path length (delta 2–4 Hz), lower average clustering
(beta 13–20 Hz), lower small-worldness (gamma 30–60
Hz), and a tendency for an earlier start of musical

Table 5 Cranio-cerebral correlations for electrode positions (10–10 system, modified after [110])

Electrode label Talairach coordinates (mm) Anatomical region

x y z Lobe Gyri BA

FP1 − 21.2 ± 4.7 66.9 ± 3.8 12.1 ± 6.6 L FL Superior frontal G 10 (100%)

FP2 24.3 ± 3.2 66.3 ± 3.5 12.5 ± 6.1 R FL Superior frontal G 10 (100%)

F3 − 39.7 ± 5.0 25.3 ± 7.5 44.7 ± 7.9 L FL Middle frontal G (75%), 6 (19%), 46 (6%)

F4 41.9 ± 4.8 27.5 ± 7.3 43.9 ± 7.6 R FL Middle frontal G 8 (69%), 6 (6%), 9 (25%)

FC3 − 45.5 ± 5.5 2.4 ± 8.3 51.3 ± 6.2 L FL Middle frontal G 6 (75%), 4 (12.5%), 8 (12.5%)

FC4 47.5 ± 4.4 4.6 ± 7.6 49.7 ± 6.7 R FL Middle frontal G 8 (69%), 6 (6%), 9 (25%)

C3 − 49.1 ± 5.5 − 20.7 ± 9.1 53.2 ± 6.1 L PL Postcentral G 21 (62.5%), 22 (25%), 20 (6.5%), 42 (6%)

C4 50.3 ± 4.6 − 18.8 ± 8.3 53.0 ± 6.4 R PL Postcentral G 123 (81.5%), 6 (12.5%), 40 (6%)

CP3 − 46.9 ± 5.8 − 47.7 ± 9.3 49.7 ± 7.7 L PL Inferior parietal G 40 (82%), 123 (6%), 5 (6%), 39 (6%)

CP4 49.5 ± 5.9 − 45.5 ± 7.9 50.7 ± 7.1 R PL Inferior parietal G 40 (77.5%), 123 (12.5%)

P3 − 41.4 ± 5.7 − 67.8 ± 8.4 42.4 ± 9.5 L PL Precuneus 39 (37.5%), 7 (25%), 19 (25%), 40 (12.5%)

P4 44.2 ± 6.5 − 65.8 ± 8.1 42.7 ± 8.5 R PL Inferior parietal L 39 (31%), 7 (25%), 40 (25%), 19 (19%)

F7 − 52.1 ± 3.0 28.6 ± 6.4 3.8 ± 5.6 L FL Inferior frontal G 45 (56%), 47 (38%), 46 (6%)

F8 53.2 ± 2.8 28.4 ± 6.3 3.1 ± 6.9 R FL Inferior frontal G 45 (37.5%), 47 (37.5%), 46 (25%)

FT7 − 59.2 ± 3.1 3.4 ± 5.6 − 2.1 ± 7.5 L TL Superior temporal G 22 (75.5%), 21 (12.5%), 38 (6%), 44 (6%)

FT8 60.2 ± 2.5 4.7 ± 5.1 − 2.8 ± 6.3 R TL Superior temporal G 22 (75%), 21 (13%), 38 (6%), 44 (6%)

T7 − 65.8 ± 3.3 − 17.8 ± 6.8 − 2.9 ± 6.1 L TL Middle temporal G 21 (81.5%), 22 (12.5%), 43 (6%)

T8 67.4 ± 2.3 − 18.5 ± 6.9 − 3.4 ± 7.0 R TL Middle temporal G 4 (50%), 123 (25%), 6 (25%)

TP7 − 63.6 ± 4.5 − 44.7 ± 7.2 − 4.0 ± 6.6 L TL Middle temporal G 21 (50%), 37 (25%), 22 (19%), 20 (6%)

TP8 64.6 ± 3.3 − 45.4 ± 6.6 − 3.7 ± 7.3 R TL Middle temporal G 21 (62.5%), 22 (12.5%), 20 (12.5%), 37 (12.5%)

P7 − 55.9 ± 4.5 − 64.8 ± 5.3 0.0 ± 9.3 L TL Inferior temporal G 37 (44%), 19 (38%), 39 (18%)

P8 56.4 ± 3.7 − 64.4 ± 5.6 0.1 ± 8.5 R TL Inferior temporal G 19 (56%), 37 (19%), 20 (12.5), 39 (12.5%)

O1 − 25.8 ± 6.3 − 93.3 ± 4.6 7.7 ± 12.3 L OL Middle occipital G 18 (81%), 19 (19%)

O2 25.0 ± 5.7 − 95.2 ± 5.8 6.2 ± 11.4 R OL Middle occipital G 18 18 (81%), 19 (19%)

Oz 0.3 ± 5.9 − 97.1 ± 5.2 8.7 ± 11.6 M OL Cuneus 18 (62.5), 17 (31%), 19 (6.5%)

Fz 0.0 ± 6.4 26.8 ± 7.9 60.6 ± 6.5 M FL Bilateral medial 6 (81.5%), 8 (12.5%), 9 (6%)

Cz 0.8 ± 4.9 − 921.9 ± 9.4 77.4 ± 6.7 M FL Precentral G 4 (62.5%), 6 (37.5%)

Pz 0.7 ± 6.3 − 69.3 ± 8.4 56.9 ± 9.9 M PL Superior parietal L 7 (88%), 5 (6%), 19 (6%)

Estimated projection of electrode positions to cortical areas (Talairach space) and variability of associated BA (Brodman areas), investigated by [110] using
EEG-MRI sensors
L left, R right, FL frontal lobe, PL parietal lobe, TL temporal lobe, OL occipital lobe, L lobe, G Gyrus
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training in absolute pitch musicians. Furthermore, pitch
naming was well predicted by autistic traits, path
length, and clustering values, explaining a total of 44%
of the variance. Pitch adjustment (i.e., active absolute
pitch) was explained by the same predictors plus the
age of the beginning of musical training summing up to
an R2 = 0.38. However, in the latter case, the starting
age of musical training and path length remained mar-
ginally significant.
It is noteworthy that the start of playing a musical

instrument in our models did not significantly improve
the prediction of AP performance but only in pitch adjust-
ment. Furthermore, the total amount of musical training
during life neither was predictive of any AP performance
in the general linear model, nor did show a group differ-
ence. The typical human brain exhibits a small-world-like
structure with a much higher clustering compared to a
random network, while maintaining an efficient informa-
tion transfer and low wiring cost through an equally low
path length [70, 103, 107]. In this context, the results of
the present study indicate a less efficient and less

small-world structured functional network in AP com-
pared to RP, in line with the structural results of Jäncke et
al. [49] and the results from the autism research [52, 53,
56, 100, 113] but extends the results to EEG functional
connectivity networks.
It is further interesting that both correlations and re-

gressions between autistic traits and the two AP tests
show higher correlations and better prediction of pitch
naming than pitch adjustment by AQ. This can be ex-
plained by the aforementioned theory of veridical map-
ping [7, 69]. This framework explains savant abilities and
other unusual abilities in autism by their common charac-
teristic of one-to-one mappings between elements of two
conceptual or perceptual structures (e.g., letters-musical
tones, letters-colors). According to this theory, all of these
abilities share further commonalities including hyper-sys-
temizing [61]and enhanced perceptual functioning [59,
60], and depend on the exposure to material, and—if they
occur as autistic savant ability—the related elements can
also be recalled without a strategy [7, 69]). This explicit re-
call in the absolute pitch, i.e., the naming of the pitch,

Fig. 2 Visualization of single connection differences in the beta range. Left: Cohen’s d effect size values for all pairs of electrodes between groups in
separate matrices for unstandardized (top) vs. z-standardized (bottom) raw connectivity matrices (permutation testing). Significant connections (FDR
corrected) are highlighted in light blue. Right: Significant differences plotted in EEG-cap order (extended 10–20 system, view from above). Colors indicate
the direction of effect (blue: AP > RP, yellow: RP < AP) and size of the line corresponding the effect size (Cohen’s d)
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therefore might be a more savant-like ability, leading to a
higher correlation with autistic traits.
Furthermore, we observed a reduced connectivity for

AP compared to RP in interhemispheric connections
when compared to the participants own distribution of
connectivities (z-standardized calculation)—especially
between the left auditory-located electrodes and various
right temporal, parietal, and frontal electrodes.
While higher path length in low frequency bands (delta,

therefore reduced integration) and lower clustering in
higher frequencies (beta, reduced segregation on sensor
level) are in line with our a priori hypotheses, we did not
expect the reduced small-worldness within the gamma
band for AP compared to RP (found during eyes closed).
Nevertheless, this result can be explained by previous re-
search findings: Cantero et al. [114] reported an increased
gamma band measured by intracranial electrodes between
hippocampal areas and neocortex in humans during
wakefulness but not during sleep, pointing to a relation of
gamma band couplings and awareness states in humans.
This also suggests that gamma band activity, probably use-
ful for the storage and retrieval of memory [115–117] and
binding of perceptual features [116, 117], might even play
a role during resting (awake more than asleep) states. AP
ability, similarly, is often described as the ability to associ-
ate tones and verbal labels in a stable, hyper-memorized
way, pointing to the importance of long-term memory
processes [118–122]. Furthermore, Bhattacharya et al.
[123, 124] found increased long-range gamma
synchronization between distributed cortical areas during
music listening in musicians compared to non-musicians,
which might reflect musical memory and binding of mu-
sical features. In contrast, Sun et al. [125] found reduc-
tions in gamma-band phase locking and power in
participants with autism associated with perceptual
organization tasks (visual), while Brown et al. [126] found
higher gamma peaks in response to illusory figures in aut-
ism. Generally, abnormal gamma activity is found in a
range of neuropsychiatric disorders, with reduced gamma
in negative schizophrenic symptoms, Alzheimer’s disease,
and task-specific gamma decrease in autism, but an in-
crease in gamma in ADHD, positive schizophrenic symp-
toms, and epilepsy (for a review see [127, 128]). Thus, the
results of reduced small-worldness in AP are in line with
an integration-deficit hypothesis of AP, both in perceptual
organization and binding of musical stimuli and in brain
connectivity, which is again similar to autism (see [50, 52,
129–132]). However, the findings in gamma band did not
show correlations with autistic symptoms.
Our results replicate the results of Dohn et al. [47]

showing higher autistic traits, which reached signifi-
cance in the subscales “imagination” (similar to [47]),
“attention to detail” (marginally), and “social skills”
(marginally). Furthermore, autistic traits were also

correlated not only to pitch naming as already shown
by Dohn et al. [47], but also to pitch adjustment accur-
acy (MAD, mean absolute deviation to target tone in
cent; 100 cent = 1 semitone) and adjustment
consistency (SDfoM, pitch template tuning). However,
similar to [47], the group mean autistic traits did not
reach the cutoff for diagnostic relevance, indicating a
high variability regarding autistic traits even in the AP
group (with seven AP compared to one RP scoring
above cutoff or borderline). This fits with the analyses
of the broader autism phenotype [133] and might im-
plicate joint as well as divergent phenotypic and endo-
typic characteristics of AP and autism.
In contrast to our study, various previous studies

have shown an influence of the start of musical training
in AP, making the onset of training before the age of 7
necessary, but not sufficient to acquire absolute pitch
[12, 16, 20–22, 41]. For example, Loui et al. [41] re-
cently found that early onset of musical training was as-
sociated with an enlarged tract between pSTG and
pMTG in the left hemisphere, but the degree of AP
proficiency still correlated with the size of the tract
after partialling out the age of onset. Gregersen et al.
[12] further analyzed the familiar aggregation of AP in
different samples of musicians and non-musicians with
early and late onset of musical training comparing dif-
ferent types of musical education and found no general
differences of AP between early or late starting siblings
of AP. Their results further indicated a higher influence
of genetic disposition and the type of education used,
which both had a more pronounced influence than the
age of onset per se [12].
Higher average path length (delta 2–4 Hz)), lower

average clustering (beta 13–20 Hz), and lower small-
worldness (gamma 30–60 Hz) for AP compared to RP
are also in line with previous studies showing struc-
tural local hyper- vs. global hypoconnectivity in AP
[49] and reduced clustering and higher path length in
participants with autism [113, 134]. In contrast, Loui
et al. [51] reported overall increased degrees, cluster-
ing, and local efficiency coefficients of functional net-
works in AP using fMRI during music listening and
rest. The authors further speculate that there might
be a “dichotomy” between the structural and func-
tional hyperconnectivity in AP, where the structure is
locally hyperconnected but the function is globally
hyperconnected [51]. The present study, however,
provided more evidence for an also functionally
underconnected brain in AP musicians compared to
relative pitch musicians. Diverging results compared
to Loui et al. [51] might be due to differences in
methods (EEG vs. fMRI) or different definition of
nodes (electrode positions vs. brain regions) and
edges (wPLI vs. functional correlations).
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Differences seen in single connection analysis might re-
flect the connections that lead to differences in clustering
values described above. Similarly to the prediction of clus-
tering by AP and autistic traits, single connection differ-
ences in the beta range are in line with the findings from
the autism literature: First, various others have reported
reduced interhemispheric connectivity in autism [56, 112,
113, 135, 136]. Second, hypoconnectivity between the left
FT7 (BA:22) and right frontal-temporal-occipital elec-
trodes (F8, T8, TP8, P8, P4; BA:45/47, 4, 21/22/20/37, 19/
37, 39/7/40/19; see Table 4 for the anatomical interpret-
ation of electrode positions) might reflect a specific under-
connectivity between the left STG and right IFOF, of
which alterations have already been described in both AP
[137] and autism [138]. Especially reduced interhemi-
spheric connectivity between the left auditory-related cor-
tex and right IFOF might reflect autism-like personality
traits and perception of (some) absolute pitch possessors.
The IFOF, especially the right IFOF, has been shown to
play an important role in music perception and the inte-
gration of musical features, as it connects various brain re-
gions from the frontal over temporal to posterior parts of
the brain [139]. A reduced white matter integrity of IFOF
was found in amusics [139, 140], whereas people with
synesthesia and absolute pitch were shown to have a
higher IFOF integrity [67, 137]. More importantly, how-
ever, increased interhemispheric connectivity in musicians
was found by several studies [141–145] showing the im-
portance of interhemispheric integration in music percep-
tion. A reduced interhemispheric functional connectivity,
especially between bilateral auditory regions as found in
the present study, perhaps might result in less perceptual
integration of musical features (i.e., auditory weak central
coherence) and hence a more detail-oriented processing
of music and musical pitches (i.e., absolute vs. relative) in
those participants. An exaggeration of those features
might also lead to symptoms of amusia, which has also
been associated with alterations in the left and right STG
and right IFOF [139, 140, 146] and with autism [147].
However, it must be clearly said that we cannot explicitly
conclude the anatomical differences from connectivity
differences on the sensor levels. Further structural or
functional studies using methods with high anatomical
precision have to be conducted to evaluate this
hypothesis.

Limitations
Some caveats of the present approach are warranted.
First, we did not use a source-based approach of func-
tional connectivity, making conclusions with respect to
anatomical associations of the obtained differences very
speculative. Second, various different configurations of
local and global hyper- vs. hypoconnectivity can be
assumed to result into the same averaged network

measures; therefore, no conclusions can be made about
the exact relative structure within the brain and among
different regions. Nevertheless, higher path length (EC,
delta 2–4 Hz) can be interpreted as weaker integration
in the network and higher clustering (EO,13–20 Hz) as
higher local segregation of functions [95] and therefore
might again reflect a local hyper- over global (integra-
tive) hypoconnectivity in the brain of AP musicians. This
interpretation is further encouraged by studies showing
that long-range connectivity (integration) is more
reflected in low frequency bands, whereas short-range
connectivity is more in high frequency bands [110, 148].
This again fits to the results of our study, as higher clus-
tering, indicative for local segregation, was found in the
beta range and path length—indicative for global inte-
gration in the network and therefore long-range associa-
tions—in the delta range.
Furthermore, evidence for a higher proportion of AP

among people with autism or Williams syndrome, as
mentioned in the introduction, is currently mainly based
on case studies and case reports, as systematic epidemi-
ologic studies have not been conducted yet and studies
with respect to Williams syndrome are rare. Therefore,
the actual co-occurrence between the phenomena re-
mains to be evaluated. On top of that, the R2 values for
predicting brain connectivity by AP and autism seem
comparably weak. Mediation analysis did not reveal a
mediating influence of autistic traits on the relation be-
tween absolute pitch and brain connectivity (both direc-
tions). However, the nature of altered brain connectivity
is a common phenotype for numerous neuropsychiatric
disorders and phenomena, not just autism and absolute
pitch. Therefore, we have to admit that a range of other
factors influencing brain connectivity would have been
necessary to get a more detailed insight into what influ-
ences brain connectivity and vice versa. Most likely a re-
lation between autistic traits and absolute pitch is only
true for a subgroup of absolute pitch possessors. Bigger
sample sizes are necessary to investigate this hypothesis.
In addition, significant group differences were highly

selective for certain frequency bands, states (EO vs. EC),
and thresholds. Nevertheless, we can rule out the possi-
bility that we obtained those differences by chance. First,
there were significant differences for at least one thresh-
old in a frequency band, and effect sizes of the other
thresholds in the same frequency band never (exclusive:
Crand EO alpha) indicated reverse effects (see color
code in Fig. 1). Second, we did only consider differences
relevant if at least two neighboring thresholds exhibited
a significant group difference. Third, the three network
parameters selected via group differences always could
also predict AP performance with a reasonable high R2

and/or showed bivariate correlations with AP perform-
ance in both tests of AP.
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Conclusion
For the first time, we included a pitch adjustment test of
active absolute pitch [79] into a study on brain connectiv-
ity in AP, so we are not only referring to pitch naming as
were previous studies [41, 47, 49, 51]. Also, whereas
Jäncke et al. [49] were using structural cortical thickness
covariations and Loui et al. [51] functional correlations of
fMRI activity (during rest and music listening) as weights
for connections in graph analysis, we for the first time ap-
plied graph theory on the resting-state EEG connectivity
of AP musicians, both in eyes closed and eyes open condi-
tions. This is similar to methods used in analyzing brain
connectivity in autism [57, 113]. Finally, while Elmer et al.
[118] used phase synchronization as an estimate for func-
tional EEG connectivity, we used wPLI (weighted phase
lag index, [85]), which is less contaminated by volume
conduction [85–88, 91], thus contributing to a higher
validity and reliability with respect to true brain connect-
ivity and graph theoretical parameters [89, 93, 94].
In summary, differences in network and connectivity

analysis in the beta band seem to be specifically associated
with the relation of autistic traits and absolute pitch,
whereas path length in delta range and small-worldness in
gamma range might reflect other influences on the acqui-
sition of the ability (e.g., environmental factors, genetic
factors not attributable to autistic traits, musical education
method, instrument, learning, sensitive periods). To our
knowledge, this is the first study to combine measures on
autistic traits and brain networks on musicians with and
without absolute pitch. We conclude that this is further
evidence showing that both AP and autism have shared
and distinct neuronal and phenotypic characteristics. This
might also be reflected in subgroups of AP with different
genesis, providing new arguments for the discussion about
a dichotomous or continuous view on AP. However, the
causal relationship between AP, autistic traits, and brain
connectivity remains to be evaluated.
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