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Abstract

Background: Several reports have suggested a role for epigenetic mechanisms in ASD etiology. Epigenome-wide
association studies (EWAS) in autism spectrum disorder (ASD) may shed light on particular biological mechanisms.
However, studies of ASD cases versus controls have been limited by post-mortem timing and severely small sample
sizes. Reports from in-life sampling of blood or saliva have also been very limited in sample size and/or genomic
coverage. We present the largest case-control EWAS for ASD to date, combining data from population-based
case-control and case-sibling pair studies.

Methods: DNA from 968 blood samples from children in the Study to Explore Early Development (SEED 1) was
used to generate epigenome-wide array DNA methylation (DNAm) data at 485,512 CpG sites for 453 cases and 515
controls, using the Illumina 450K Beadchip. The Simons Simplex Collection (SSC) provided 450K array DNAm data
on an additional 343 cases and their unaffected siblings. We performed EWAS meta-analysis across results from the
two data sets, with adjustment for sex and surrogate variables that reflect major sources of biological variation and
technical confounding such as cell type, batch, and ancestry. We compared top EWAS results to those from a
previous brain-based analysis. We also tested for enrichment of ASD EWAS CpGs for being targets of meQTL
associations using available SNP genotype data in the SEED sample.

Findings: In this meta-analysis of blood-based DNA from 796 cases and 858 controls, no single CpG met a Bonferroni
discovery threshold of p < 1.12 × 10− 7. Seven CpGs showed differences at p < 1 × 10− 5 and 48 at 1 × 10− 4. Of the top
7, 5 showed brain-based ASD associations as well, often with larger effect sizes, and the top 48 overall showed modest
concordance (r = 0.31) in direction of effect with cerebellum samples. Finally, we observed suggestive evidence for
enrichment of CpG sites controlled by SNPs (meQTL targets) among the EWAS CpG hits, which was consistent across
EWAS and meQTL discovery p value thresholds.
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(Continued from previous page)

Conclusions: No single CpG site showed a large enough DNAm difference between cases and controls to achieve
epigenome-wide significance in this sample size. However, our results suggest the potential to observe disease
associations from blood-based samples. Among the seven sites achieving suggestive statistical significance, we
observed consistent, and stronger, effects at the same sites among brain samples. Discovery-oriented EWAS for ASD
using blood samples will likely need even larger samples and unified genetic data to further understand DNAm
differences in ASD.

Keywords: DNA methylation, Epigenome, Autism spectrum disorders, Peripheral blood, Study to Explore Early
Development, Simons Simplex Collection

Findings
The etiology of autism spectrum disorder (ASD) may
involve epigenetic mechanisms. Indirect evidence sup-
porting this hypothesis comes from the observation that
children with Rett, Fragile X, and Angelman syndromes
often show impaired communication and exhibit repeti-
tive behaviors [1–3], two core domains affected in
autism. All three of these syndromes are caused by
epigenetic defects [4–9]. Additional evidence stems from
genetic studies of rare variation in non-syndromic forms
of ASD. Although these studies have primarily identified
private variants associated with ASD, there is now strong
evidence that the ASD-associated variants converge
upon three biological pathways, one of which is chroma-
tin remodeling [10–12]. Finally, there is direct evidence
from case-control postmortem brain studies supporting
epigenetic involvement in ASD. Several candidate
gene-based studies have shown altered epigenetic states
associated with autism [13–18]. Genome-scale screens
have identified changes in DNA methylation (DNAm) at
specific CpG sites [19, 20] as well as global changes in
non-CpG methylation levels [21] in postmortem cerebral
tissue from individuals with ASD relative to controls.
Studies of cerebral cortex tissue has revealed genomic
spreading of histone H3 lysine 4 methylation and
histone H3 lysine 27 acetylation marks, away from the
promoter region, among a subset of individuals with
ASD compared to controls [22, 23].
Examination of the affected tissue, i.e., the brain, can

provide important insights into potential mechanisms of dis-
ease etiology; however, there are considerable limitations
with these types of studies. They suffer from severely small
sample sizes, have historically had low genomic coverage,
and often lack comprehensive unified clinical, demographic,
and genomic data. Importantly, they are based on
autopsy-derived tissue and do not reflect epigenetic marks
in a living individual, are not at optimal developmental tim-
ing, and may be influenced by life experiences and cause of
death. To overcome these barriers, complementary, large
population-based autism epigenetic studies using accessible
tissues, such as blood, from living individuals are needed.
DNAm from peripheral tissues is useful to analyze for its

potential to mimic DNAm signatures from the brain. But
outside of brain concordance, it can also be useful for its
ability reflect consequences of ASD, provided that sample
collection is performed following ASD onset. Moreover,
peripheral tissue DNAm signatures related to ASD may
result from environmental exposures that simultaneously
contribute to ASD. To date, three genome-scale epigenetic
studies of autism in accessible peripheral tissues have been
performed. One study of peripheral blood from 50 monozy-
gotic twin pairs, including 6 pairs discordant for ASD at age
15, examined DNAm at over 27,000 CpG sites in promoter
regions. The authors found suggestive evidence for epige-
netic alterations associated with ASD and associated traits
within families [24]. Similarly, an investigation of DNAm at
CpG island regions in lymphoblastoid cell lines, obtained
from 7 twin pairs including 3 discordant for ASD, found
ASD-related DNAm changes at the RORA gene [25]. Both
of these studies were limited by the small number of sam-
ples examined, lack of genome-scale coverage, and specific
focus on twin pairs with a lack of extension to the general
population. Ectoderm cell lineage-derived buccal cells,
obtained from 47 ASD cases and 48 controls born to
mothers aged 35 and older, have also shown suggestive
epigenetic alterations associated with ASD [26]. While sug-
gestive, it is unclear how these buccal-based epigenetic find-
ings relate to a population sample and in a larger number of
individuals. Thus, more research in accessible tissues from
larger population-based, non-familial, samples is needed.
Here, we overcome previous limitations and perform

the largest epigenome-scale examination of DNAm, to
date, among two large US case-control studies of autism:
the Study to Explore Early Development, phase I (SEED
I) and the Simons Simplex Collection (SSC). Both mea-
sured DNAm at over 450,000 loci in childhood blood
samples from either population-based cases and controls
(SEED I) or discordant sibling pairs (SSC). Meta-analysis
across both sets included 796 ASD cases and 858
controls. In addition to CpG-specific differential DNAm,
we explored the set of blood-derived differentially me-
thylated sites for their concordance in post-mortem
brain tissue and their enrichment for genetically con-
trolled CpG sites.
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Methods
Study to Explore Early Development (SEED)
The Study to Explore Early Development is a multi-site
case-control study with population-based ascertainment. In
SEED phase 1, a total of 3899 families were recruited across
6 study sites (California, Colorado, Georgia, Maryland,
North Carolina, and Pennsylvania) and classified into 3
groups according to a child’s diagnosis: an autism spectrum
disorder (ASD) group, a general population control group
(POP), and a (non-ASD) developmental delay group.
Details regarding participant recruitment, biospecimen
collection, and final outcome classification have been pre-
viously described [27, 28]. Briefly, eligible children were
born in one of the catchment areas between September 1,
2003, and August 31, 2006, which corresponded to being
aged 2–5 years at the time of SEED phase I enrollment,
resided in the same catchment area at the time of initial
contact, and were required to live with a knowledgeable
caregiver who could communicate in English (or in English
or Spanish in California or Colorado) [27]. Biospecimens
were collected when the children were between the ages of
3 and 5 years. Children with possible ASD and DDs were
ascertained through multiple sources providing services for
children with developmental disorders including hospitals,
individual providers, clinics, and education and intervention
programs. Parents with a child with an ASD or DD diagno-
sis could also contact the study directly to enroll. General
population controls were ascertained through random sam-
pling of vital records in the catchment areas [27]. This pro-
vides a more diverse segment of the population than solely
recruiting participants from autism clinics.
Primary caregivers completed the Social Communica-

tions Questionnaire (SCQ) [29], a screener for autism
spectrum disorder, during the study invitation phone call.
Children with an SCQ score below 11 and without a previ-
ous ASD diagnosis were asked to participate in a general
developmental evaluation in the clinic using the Mullen
Scale of Early Learning (MSEL) [30]. If the SCQ score was
above 11, the child had previously received an ASD diagno-
sis, or a clinician suspected ASD during the clinic visit, the
child additionally completed a full ASD evaluation that
included the Autism Diagnostic Observation Schedule
(ADOS) [31–33] and the Autism Diagnostic Interview Re-
vised (ADI-R) [34, 35]. ASD was confirmed based on scores
on the ADI-R and ADOS, as described in detail elsewhere
[36]. Institutional review boards at each study site and at
the Centers for Disease Control and Prevention (CDC) ap-
proved the SEED study. Informed consent was obtained
from all enrolled participants. For this study, we measured
methylation among a subset of SEED phase 1 individuals
(n = 980) with genome-wide genotyping data, a complete
caregiver interview, an ASD or POP classification, and a
sufficient amount of DNA available for methylation
measurements.

Simons Simplex Collection (SSC) A complete description
of the SSC, which enrolled and collected biospecimens from
children and adolescents aged 4–18 years, can be found
elsewhere [37]. Briefly, a geneticist and a clinical psycholo-
gist were appointed as co-principal investigators at each site.
Probands were evaluated with a battery of diagnostic mea-
sures, including the Autism Diagnostic Interview – Revised
(ADI-R) [34] and the Autism Diagnostic Observation
Schedule (ADOS) [31]. Other instruments provided add-
itional measures of the core features of autism, as well as of
intellectual ability (verbal and nonverbal), adaptive behavior,
emotional and behavior problems, motor function, and lan-
guage. A description of instruments employed can be found
at https://sfari.org/ssc-instruments. A comprehensive family
medical history was obtained that included the proband’s
prenatal and perinatal history, developmental milestones,
immunizations, medications, dietary supplements, and
common behavioral treatments. Emphasis was placed on
common “comorbidities” including gastrointestinal com-
plaints, sleep irregularities, and seizures. In addition, ques-
tions were asked about genetic, autoimmune, and
psychiatric disorders in members of the extended family.
Probands were excluded who were younger than 4 years
of age or older than 18. Probands were also excluded for
conditions that might compromise the validity of diagnos-
tic instruments, such as nonverbal mental age below
18 months, severe neurological deficits, birth trauma,
perinatal complications, or genetic evidence of fragile X or
Down syndromes. A complete description of exclusion/in-
clusion criteria can be found at http://sfari.org. Measures
of adaptive function, behavior-emotional problems, and
symptoms of autism were examined in parents and
siblings as well as probands.
Thus, the SSC represents a unique, well-described

sample of able children and adolescents with relatively
severe ASD, as indicated by ADI-R and ADOS Cali-
brated Severity Scores [38].

Reliability of data
To maximize the consistency of clinical observations
across sites, each clinician was trained in administration
of the ADOS and ADI-R to achieve research reliability
as judged by expert clinicians. Most clinicians who had
not previously received research training required 4–
6 months of practice. Videotapes of interviews were ex-
changed to ensure that reliability requirements were met
and maintained throughout the study. Error rates were
very low, averaging less than 0.50 errors/1000 data
points. Most errors could be corrected immediately,
resulting in an unusually clean data set for a multisite
study of this size. During each visit, a blood sample was
collected from each study participant and DNA was ex-
tracted from blood cells, while plasma was stored for fu-
ture use.
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DNA methylation data quality control (QC) and
processing
For the SEED samples, genomic DNA was isolated from
980 whole blood samples using the QIAsymphony midi kit
(Qiagen). For each sample, 500 ng of DNA was bisulfite
treated using the 96-well EZ DNA methylation kit (Zymo
Research). Samples were randomized within and across
plates, and across two main processing dates to minimize
batch effects, and run on the Illumina HumanMethyla-
tion450 BeadChip. Background correction and dye-bias
equalization was performed using the function preprocess-
Noob() [39, 40] in the minfi R package [41]. We included
12 cross-plate duplicates for quality control purposes; pair-
wise correlation metrics for the duplicate samples ranged
from 0.990 to 0.997 with a mean correlation value equal to
0.995. Samples were removed if they had low overall inten-
sity (median unmethylated or methylated signal < 11) or
had a detection p value > 0.01 in more than 1% of probes
(N = 7), or if reported sex did not match predicted sex
generated via the minfi function getSex() (N = 3). Probes
were removed if they had a detection p value > 0.01 in more
than 10% of samples (n = 702) and then if they had been
previously identified as being ambiguously mapped [42]
(n = 29,146). Following QC, the analytic data included
DNAm for 455,664 sites on 970 samples. We further
removed two samples who were missing a final out-
come classification, leaving a total of 453 cases and 515
controls used for association analyses.
For the SSC samples, 500 ng of human genomic DNA

was sodium bisulfite-treated for cytosine to thymine con-
version using the EZ DNA Methylation Gold kit (Zymo
Research). A total of 728 samples (from 364 families) were
randomized within and across plates to minimize batch ef-
fects and run on the Illumina HumanMethylation450
BeadChip. Additional details have been previously de-
scribed [43]. Similar quality control procedures as used
for the SEED samples were used for the SSC samples.
After background correction and dye-bias equalization,
samples were removed for low overall intensity (median
unmethylated or methylated signal < 11) or for detection
p value > 0.01 in more than 1% of probes (N = 42). Probes
were removed if they had a detection p value > 0.01 in
more than 10% of samples (n = 483) and then if they had
been previously identified as being ambiguously mapped
(n = 29,213). These steps resulted in an analytic data set
with 455,816 sites on 686 samples, consisting of 343
proband-sibling pairs.
Finally, for all SEED and SSC samples, we estimated

cell type proportions for six different cell types (gra-
nulocytes, monocytes, CD4 T cells, CD8 T cells, B cells,
and natural killer cells) using the estimateCellCounts()
function in the minfi R package. Estimation incorporated
reference data from 60 samples generated from 6 healthy
adult men [44].

Genotype data quality control and processing
Whole genome genotyping data was available for 943 of the
970 SEED 1 samples which passed DNAm quality control
steps. After genotype measurement using the Illumina
HumanOmni1-Quad BeadChip, standard quality control
measures were applied, including removal of samples with
< 95% SNP call rate, sex discrepancies, relatedness (Pi-hat
> 0.2), or excess hetero- or homozygosity, and removal of
markers with < 98.5% call rate, or that were monomorphic.
Phasing was performed using SHAPEIT [45] followed by
SNP imputation via the IMPUTE2 software [46], using
1000 Genomes Project samples as reference. Principal com-
ponents to account for ancestry were determined via the
EigenStrat program [47].

Epigenome-wide association testing and meta-analysis
For the SEED data, we used linear regression modeling
of the M value (the ratio of methylated to total signal
determined at every probe in every sample) [48] as a
dependent variable and ASD status, sex, and surrogate
variables (SVs) (described below) as independent vari-
ables. We implemented this model using the lmFit()
function in the limma R package [49], separately for
each of the DNAm probes that passed QC. For the SSC
data, we implemented a generalized estimating equation
(GEE) model using the gee() function in the gee R
package [50] to account for the correlation inherent to
the familial structure in the data. We used a fixed corre-
lation structure of 0.5 for each sibling pair, and regressed
M value onto ASD status, sex, and SVs.
To account for sources of technical and biological

variability in our association analyses, we estimated
surrogate variables (SVs) [51] in the cleaned SEED and
SSC dataset to include as covariates in our downstream
analyses. SVs have been shown to capture and adjust for
differences related to batch effects and cell type propor-
tions across samples in a wide variety of simulated set-
tings [52], and to remove the effects of unwanted
sources of technical and biological variation [51]. In
order to explicitly address the strong confounding effect
of sex resulting from the high degree of male bias in
ASD diagnosis, we removed sex chromosomes, where
DNAm values strongly correlate to sex, before SV esti-
mation, and included sex along with ASD status in the
model used for SV estimation. We then used a
data-driven procedure individually in the SEED and SSC
data to select the number of SVs to include in the
association models.
First, to examine the relationship between each SV and

known sources of technical and biological variation, we
estimated the association between each estimated SV and
cell type composition, principal components of genetic an-
cestry, and processing batch. We then generated a visual
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representation of the degree of association with these vari-
ables using a heat map (Additional file 1: Figures S1a, S2a).
We next examined the influence of iterative inclusion

of SVs as adjustment variables in our association regres-
sion models. To do this, we first ran a case-control asso-
ciation model with adjustment for the strongest
estimated SV [51], then progressively included the next
strongest SV in the analysis and continued this proce-
dure until all estimated SVs were included. For each
model, we recorded the inflation factor, or lambda, cal-
culated via the estlambda() function from the GenABEL
R package [53], and visualized the relationship be-
tween number of SVs adjusted for and lambda values
(Additional file 1: Figures S1b, S2b). We chose the
number of SVs to include in the model by considering
both the number of SVs at which the estimated lambda
values began to plateau and where the known potential
confounders appeared to be captured by one or more SVs.
We chose to include 19 SVs in the SEED association
analysis and 14 in the SSC analysis.
After completing each association analysis, we then

performed a meta-analysis using the METAL software
[54] on the 445,068 probes that were present in both the
SEED and SSC cleaned datasets. Our approach weighted
individual study effects by sample size and also took into
account the direction of effect. We also computed the
false discovery rate (FDR) using the Benjamini-Hochberg
method [55]. We also determined statistical power for
this meta-analysis a priori using an estimation method
specifically designed for epigenome-wide association
studies [56].

Comparison of blood epigenome-wide association studies
(EWAS) hits to brain-based DNAm
We sought to compare the consistency of top EWAS re-
sults from the blood-based meta-analysis to our previous
analysis of post-mortem brain samples from ASD cases and
controls [19]. These data consist of DNAm from three
brain regions: cerebellum, prefrontal cortex, and temporal
cortex. For the CpG sites reaching suggestive levels of
significance (p < 1 × 10− 4) in the meta-analysis, we com-
puted mean differences between cases and controls in each
of these three brain regions. We then computed Pearson
correlations and quadrant count ratios between the blood
effect sizes and three lists of brain effect sizes. We
computed quadrant count ratios as the sum of concordant
effect sizes (both positive or both negative) minus the sum
of discordant effect sizes, all divided by the total number of
effect sizes being compared.

Methylation quantitative trait loci (meQTL) query and
meQTL target enrichment test
We were interested in exploring the propensity of CpG
sites that reached a level of suggestive significance in the

EWAS meta-analysis to be significantly associated with
nearby SNPs. We used joint DNAm and genotype data
to define SNPs associated DNAm, sometimes referred to
as “methylation quantitative trait loci (meQTLs)”, and
the CpG sites under genetic control, or “meQTL tar-
gets”. We then tested for enrichment of meQTL targets
in the top ranked CpG sites from the meta-analysis.
In lieu of applying our SV selection method (see

“Epigenome-wide association testing and meta-analysis”)
to every SNP-CpG association test in the meQTL query,
we conducted separate meQTL queries in each process-
ing batch of the SEED data (NBatch1 = 606; NBatch2 = 362).
In each batch, we first used a data-driven procedure we
have described in detail previously [57] to select three
key parameters for the meQTL query: the SNP minor al-
lele frequency threshold for inclusion, the CpG variabil-
ity threshold for inclusion, and the maximum distance
between SNP and CpG site to be considered for analysis.
Briefly, this procedure selects parameters to ensure 80%
power to detect a 5% DNAm difference with each
addition of the minor allele, at a Bonferroni-defined sig-
nificance threshold. We then performed the meQTL
query in each batch using the MatrixEQTL R package,
adjusting for sex, the first five principal components to
account for genetic ancestry, and the first two principal
components derived from the cell composition esti-
mates. We then defined SNP-CpG association pairs
based on results that can gain 100% power in the para-
meter survey (“permissive”), 90% power (“intermediate”),
and 80% power (“stringent”). If a SNP-CpG association
pair was significant at a designated threshold in each
batch, the CpG site was labeled a meQTL target under
that threshold for the downstream enrichment analysis.
We tested for enrichment of meQTL targets in

ASD-associated CpG sites. We examined this using two
ASD EWAS meta-analysis p value thresholds (p < 1 × 10− 3

and p < 1 × 10− 4) and the three meQTL p value thresh-
olds. In each enrichment test, we accounted for the two
main features of CpG sites likely to affect results: the de-
gree of variability in DNAm at that CpG and the number
of SNPs in the boundary considered. To do this, we
binned each CpG site by decile according to these factors.
For each EWAS/meQTL threshold scenario, we com-
pared the proportion of meQTL targets among
ASD-related CpGs to a null distribution of randomly
selected CpGs, equal in count to the number of
ASD-associated sites, matched on the same variability
and nearby SNP decile. We defined a fold enrichment
statistic as the count of meQTL targets in the
ASD-associated CpGs divided by the mean proportion
of meQTL targets from the null set, and an enrich-
ment p value as the number of null CpG sets with a
count of meQTL targets that was equal to or
exceeded the count in the ASD-associated CpG list.
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Results
ASD EWAS meta-analysis in blood
We performed a meta-analysis over the 445,068 probes
that were present in both the SEED (Table 1) and SSC
(Additional file 2: Table S1) cleaned datasets. Figure 1a
shows the range of p values and effect sizes detected in
our meta-analysis. No CpG sites reached a Bonferroni
level of significance, and effect sizes were modest
(1.12 × 10− 7; Fig. 1a). The genomic inflation factor (λ)
was 1.03, with a slight separation from expectation at
the tail (Fig. 1b). A total of 48 CpG sites met or
exceeded a p value < 1 × 10− 4, and 7 CpG sites (Table 2)
reached a significance level of p < 1 × 10− 5. We have pro-
vided a full list of summary statistics for both SEED and
SSC for all 445,068 probes (Additional file 3: Table S2).
Based on our analytic sample size, we had 80% power to
detect a 3.8% DNAm difference between cases and
controls at a Bonferonni level of significance.

Consistency of blood EWAS hits in brain
We considered the consistency of signal for the 48
blood-based CpGs with suggestive significance (p value
< 1 × 10− 4), among results from three different brain re-
gions with data available from our previous analysis of
post-mortem brain samples and ASD [19]. The cerebel-
lum exhibited a moderate degree of concordance in ef-
fect size and direction (r = 0.31; QCR = 0.33), although
prefrontal cortex (r = 0.02; QCR = 0.125) and temporal
cortex (r = − 0.10; QCR = − 0.125) showed only minimal
concordance (Additional file 4: Table S3, Additional file 5:

Figure S3). When considering the seven CpG sites with
more stringent blood-based p values < 1 × 10− 5, the dir-
ection of effect was consistent for at least five of these
seven in all three brain region results, with typically lar-
ger effect sizes (Table 3). The CpG site with the largest
effect size in blood (cg09671955) displayed consistent,
and larger, effect sizes in all three brain regions (Table 2,
Additional file 4: Table S3).

meQTL target enrichment test
When considering all CpGs associated with ASD at a li-
beral p < 1 × 10− 3 EWAS threshold, we found meQTL tar-
get enrichment at nominal significance (penrichment = 0.041),
but not at a significance threshold corrected for the six tests
performed overall (Table 4). All other combinations of
EWAS and meQTL p values tested displayed similar sug-
gestive levels of significance (0.089 ≤ penrichment ≤ 0.243) and
a consistent direction of effect towards enrichment. Also,
tests conducted for CpGs meeting the more stringent
EWAS p value threshold (1 × 10− 4) displayed a consistently
greater effect size than their corresponding tests from the
more liberal EWAS threshold.

Discussion
We report results from a large study investigating the rela-
tionship between ASD and DNAm. A case-control
meta-analysis of peripheral blood samples from the Study
to Explore Early Development and the Simons Simplex
Collection revealed that none of the 455,068 CpG sites in-
vestigated were associated with ASD at a genome-wide
significant threshold. However, 48 CpG sites reached
suggestive significance levels at p < 1 × 10− 4, including 7
CpGs at p < 1 × 10− 5. Associations with ASD at these sites
display moderate concordance with post-mortem brain
sample results from a previous study and display sugges-
tive evidence for enrichment of SNP-controlled CpG sites,
or meQTL targets.
Blood-based DNAm signatures of ASD may reflect

causal mechanisms that mimic signatures seen in the
brain. However, case-control sampling, by design occur-
ring after disease onset, can also reflect consequences of
ASD or of environmental exposures. Nonetheless, given
the potential involvement of epigenetic mechanisms in
ASD [4–12], and the availability of blood samples from
existing studies, this was an important project to pursue.
In contrast to our null findings in blood samples, pre-
vious work using brain samples has shown specific
DNAm to be associated with ASD [15, 19, 20]. The
difference in tissue type—specifically that brain-based
signatures better reflect ASD etiology—might explain
the inconsistent results across these studies. Nonethe-
less, a previous study of ASD and DNAm in peripheral
blood [24] using the earlier 27K Illumina array reported
numerous differentially methylated sites. Our study,

Table 1 Demographic characteristics for SEED samples

ASD (N = 453) Control (N = 515) p value

Sex N (%) N (%) < 2.2E−16

M 368 (0.81) 273 (0.53)

F 85 (0.19) 242 (0.47)

Processing batch N (%) N (%) 0.5136

1 289 (0.64) 317 (0.62)

2 164 (0.36) 198 (0.28)

Cell composition Mean (IQR) Mean (IQR)

Granulocytes 0.46 [0.38–0.52] 0.47 [0.40–0.54] 0.02

CD4T 0.21 [0.16–0.26] 0.20 [0.16–0.24] 0.09

B cell 0.12 [0.08–0.15] 0.11 [0.08–0.13] 0.01

CD8T 0.11 [0.08–0.15] 0.11 [0.08–0.13] 0.58

Monocytes 0.07 [0.05–0.09] 0.07 [0.06–0.09] 0.63

NK 0.02 [0.00–0.03] 0.02 [0.00–0.03] 0.83

Genetic ancestry N (%) N (%) 1.02E−06

European 214 (0.47) 324 (0.63)

African 71 (0.16) 39 (0.08)

Admixed or Asian 153 (0.34) 142 (0.28)

Missing 15 (0.03) 10 (0.02)
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despite a much higher sample size, did not observe asso-
ciations at these same sites. However, the previous
study’s reported differentially methylated sites were
based on a ranking that integrated both degree of statis-
tical significance and effect size; none of their single
CpG associations achieved statistical significance at a
Bonferroni correction level. Also, the previous study did
not explicitly account for potential confounding by cell
type proportions or address potential batch effects in the
analytic pipeline, as this was not yet commonplace in
EWAS pipelines at the time of their report. We used a
rigorous, data-driven method to account for these fac-
tors and control the genome-wide type I error rate. It is
also possible that true differentially methylated positions
for ASD exist in blood but have smaller effects sizes
than we were powered to detect. Recent EWAS

discoveries have indeed found replicable very small ef-
fect sizes, particularly in environmental health [58].
Ideally, tissue-relevant samples from earliest in utero

development would provide the greatest mechanistic in-
sights. However, this is not typically available and our
study is based instead on a case-control design using
blood-based samples. Recent examples of blood-based
epigenetic work in brain-based disorders have shown
utility, particularly when focused on integration of
genetic and epigenetic variation or when inferring bio-
logical pathways rather than discovery of specific CpGs
[57, 59–63]. For example, DNAm under genetic con-
trol (meQTL targets) can inform genetic associations
observed for ASD. Further, consideration of aggre-
gated sets of CpGs associated with ASD, rather than
single sites, can elucidate pathways of interest [57]. In

Fig. 1 Meta-analysis results of epigenome-wide association analysis for ASD in peripheral blood in SEED in SSC samples. a Volcano plot depicting
meta-analysis p value (log base 10 scale) on the y-axis and average of mean difference values in SEED and SSC samples weighted by sample size
on the x-axis. b Quantile-quantile plot (λ = 1.03)

Table 2 CpG sites identified from meta-analysis as being suggestively associated (1 × 10−5) with ASD

Probe ID CHR Position SEED p SEED mean diffa SSC p SSC mean diffa METAL p FDR Nearest geneb Location

cg21151899 22 42,337,657 1.74E−06 0.78 2.75E−02 0.54 3.82E−07 0.16 CENPM Intronic

cg03731974 16 86,531,598 2.59E−04 0.09 8.03E−04 0.08 7.29E−07 0.16 FENDRR Intronic

cg09962502 2 96,971,189 1.89E−04 − 0.05 2.53E−03 − 0.08 1.58E−06 0.21 SNRNP200 Exonic

cg01798266 1 1.53E+08 2.06E−05 − 0.43 1.93E−02 − 0.13 1.90E−06 0.21 PGLYRP4 Exonic

cg01716316 17 40,897,182 1.28E−03 − 0.09 1.09E−03 − 0.13 4.94E−06 0.44 EZH1 111 bp

cg16234726 14 1.02E+08 3.41E−04 − 0.2 8.42E−03 − 0.37 9.13E−06 0.5 DIO3 69 Kb

cg09671955 1 1.69E+08 7.20E−03 − 0.47 2.25E−04 − 1.25 9.33E−06 0.5 CCDC181 65 bp
aMean difference values computed as mean in cases −mean in controls
bLocation within gene or distance to nearest gene

Andrews et al. Molecular Autism  (2018) 9:40 Page 7 of 11



our own analysis, the most differential blood-based
CpGs had consistent effect sizes and directions, al-
though weaker, with brain-based results, particularly
for cerebellum. Blood-based CpGs were also moder-
ately enriched (though not to a statistically significant
extent) for meQTL targets. These results suggest that
blood DNAm can be reflective of DNAm in affected
tissues and suggest genetic control of DNAm as a
mechanism for this occurrence, at least in an ASD
context. More precise evidence is needed, but given
the easy accessibility of blood for DNAm measure-
ments versus brain [61], the utility of blood-based
DNAm research in ASD is worthy of additional
consideration.
In summary, our results suggest a potential role of gen-

etic factors in contributing to DNAm differences in ASD.
This is consistent with a recently reported meta-analysis
combining these results with an additional European case
control sample. In that report, while ASD itself was not
associated with DNAm at a genome-wide significance

threshold, polygenic risk scores for ASD were associated
with DNAm at particular CpGs [64]. In contrast, we show
enrichment for meQTL targets (DNAm at least partially
controlled by SNP variation) among CpGs with at least
marginal association with ASD. We further characterize
these ASD DNAm associations and compare to
brain-based results. Together, our work and the report by
Hannon et al. suggest more investigation of the relationship
between genetic risk, epigenetic marks, and ASD is war-
ranted in larger samples and across multiple tissues and de-
signs. To this end, we have provided our full summary
statistics and meta-analysis results. The need for greater
sample sizes mimics the initial stages of genetic variation
discovery in ASD, for which large mega-analyses are start-
ing to pay dividends [65].

Additional files

Additional file 1 Figures S1-S2. Depiction of surrogate variable
selection process for SEED (S1) and SSC (S2). Panel A: Heatmap indicating
degree of association with known potential technical variables or
confounders with estimated surrogate variables. Panel B: Inflation factor
(lambda) calculated for progressively including surrogate variables in
association models. The number of surrogate variables to include in the
ultimate association testing model was to determine to be that which
properly controlled the inflation factor and adequately captured known
technical variables or confounders. See “Methods” for additional
explanation. (PDF 19 kb)

Additional file 2 Table S1. Demographic characteristics for samples in
the SSC (S2) dataset. (XLSX 11 kb)

Additional file 3 Table S2. Full summary statistics and meta-analysis
results for all 445,608 CpG sites that were present in both the cleaned
SEED and SSC datasets. (CSV 40707 kb)

Additional file 4 Table S3. Concordance between suggestively
associated (p < 1 × 10− 4) CpG sites in peripheral blood and their
corresponding effect sizes in three brain regions. (CSV 3 kb)

Additional file 5 Figures S3. Quadrant plots depicting concordance in
effect sizes between suggestively associated (p < 1 × 10− 4) CpG sites in
peripheral blood and three brain regions. A) Prefrontal cortex B)
Temporal Cortex C) Cerebellum. Points in red indicate those sites with p
< 1 × 10− 5 in peripheral blood. (PNG 21 kb)

Table 3 Suggestively associated (p < 1 × 10−5) CpG sites in peripheral blood and their corresponding effect sizes in three brain
regions

Probe ID CHR Position SEED mean diffa SSC mean diffa Weighted average mean diffb PFCa,c TCa,d CERa,e

cg21151899 22 42,337,657 0.78 0.54 0.68 1.60 4.07 1.64

cg03731974 16 86,531,598 0.09 0.08 0.08 0.20 − 7.18 0.74

cg09962502 2 96,971,189 − 0.05 − 0.08 − 0.06 − 2.50 − 0.43 − 1.34

cg01798266 1 1.53E+08 − 0.43 − 0.13 − 0.31 − 2.70 − 0.91 0.87

cg01716316 17 40,897,182 − 0.09 − 0.13 − 0.1 − 0.30 − 0.02 0.39

cg16234726 14 1.02E+08 − 0.2 − 0.37 − 0.27 0.50 − 0.3 − 0.03

cg09671955 1 1.69E+08 − 0.47 − 1.25 − 0.79 − 1.40 − 1.38 − 5.11
aMean difference values computed as mean in cases −mean in controls
bAverage of SEED and SSC mean difference values weighted by sample size (NSEED = 968, NSSC = 686)
cPrefrontal cortex data from Ladd-Acosta et al. [19]
dTemporal cortex data from Ladd-Acosta et al. [19]
eCerebellum data from Ladd-Acosta et al. [19]

Table 4 Enrichment statistics for meQTL targets in ASD-related
CpG sites

meQTL p value thresholdb

Permissivec Intermediated Stringente

ASD EWAS p valuea 1 × 10−3 1.20 (0.041) 1.11 (0.218) 1.11 (0.243)

1 × 10−4 1.46 (0.134) 1.71 (0.089) 1.50 (0.205)

Enrichment fold statistics and p values based on 1000 permutations
are reported
aASD to DNAm association p value defined from meta-analysis
bSNP to CpG association p value thresholds
cp values in each methylation processing batch that allowed for 100% power
to detect a 5% methylation difference with each addition of minor allele
(see “Methods”)
dp values in each methylation processing batch that allowed for 90% power to
detect same methylation difference
ep values in each methylation processing batch that allowed for 80% power to
detect same methylation difference
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