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Abstract

Growing evidence points toward a critical role for early (prenatal) atypical neurodevelopmental processes in the
aetiology of autism spectrum condition (ASC). One such process that could impact early neural development is
inflammation. We review the evidence for atypical expression of molecular markers in the amniotic fluid, serum,
cerebrospinal fluid (CSF), and the brain parenchyma that suggest a role for inflammation in the emergence of ASC.
This is complemented with a number of neuroimaging and neuropathological studies describing microglial
activation. Implications for treatment are discussed.
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Background
The presence of inflammation in autism spectrum con-
dition (ASC) is a concept that is gathering momentum.
Traditionally, different forms of ASC have been recog-
nised: Classic (or Kanner type) autism (which can entail
general intellectual disability and language delay), Asper-
ger syndrome (which entails no developmental language
delay or intellectual disability) and syndromic forms of
autism such as co-occurring with Rett syndrome, Fragile
X syndrome, tuberous sclerosis complex and Timothy’s
syndrome, to name a few [29]. In DSM-5, these are now
subsumed under a single umbrella term of autism
spectrum disorder (ASD). In this article, we use the term
autism spectrum condition (ASC) because the term ‘dis-
order’ is regarded by some as stigmatising and the term
‘condition’ acknowledges both the disability and the dif-
ferences and strengths in such individuals.
The key behavioural features defining ASC are the

presence of difficulties in social reciprocity and commu-
nication, alongside unusually narrow interests, repetitive

behaviours and speech, insistence on sameness, and idio-
syncratic sensory responses DSM-V® [30]. Cognitively,
ASC is described as a condition characterised by weakened
central coherence [35, 46], executive dysfunction [76], and
mentalising difficulties [5, 6] alongside strengths in
‘systemizing’ [5] and attention to detail [82, 83]. Genetic,
environmental, neurological, and immunological factors
contribute to its aetiology [72].
Some, but not all, studies suggest that ASC involves

early brain overgrowth [21, 74]. This is unlikely to be a
universal phenomenon [17, 73] and is one of the key fac-
tors that could be linked to the heterogeneity of the con-
dition together with neuroinflammation. Nevertheless,
there are a multitude of developmental reasons which
could be responsible for this observation, including atyp-
ical pruning of synapses [41] and, more recently, neuron
density has been shown to play a significant role [22],
but this could also reflect neuroinflammation. Animal
models have identified microglial priming as a major fac-
tor in a causal chain that leads to the wide spectrum of
neuronal dysfunctions and behavioural phenotypes [59].
Increased head size in people with ASC correlates posi-
tively with a history of allergic/immune disorders [86].
In particular, there is an association between ASC and
neuroinflammation in anterior regions of the neocortex
[79, 101, 110], resulting from activation of microglia and
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astrocytes [2]. Gene networks involved in immune pro-
cesses are overexpressed in the brain of individuals with
ASC [102, 103]. This has been linked to atypical expres-
sion of nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) in a number of cell types in
ASC including neurons, astrocytes, and microglia [107].
This has a linear relationship with pH changes localised to
the lysosomal compartments of mature microglia [107],
indicating increased immune activity. Microglia play a
critical role in the pruning of synapses, thus providing a
potential bridge between the atypical synaptic pruning
and the immune dysregulatory hypotheses of ASC [78].
Below we review the mechanisms that may underlie neu-
roinflammation and the evidence at genetic and protein
levels for each of these mechanisms (Table 1).

Genetic studies
Many loci have been implicated in the condition [42].
Most recently, a number of recent breakthroughs have
dramatically advanced our understanding of ASC from
the standpoint of human genetics and neuropathology.
These studies highlight the period of foetal development
and the processes of chromatin structure, synaptic
function, and neuron-glial signalling [18]. A key com-
ponent of genetic architecture is the allelic spectrum
influencing trait variability. Recent studies have dem-
onstrated that the total heritability of risk-associated
genes is in the range of 50–60 % with common vari-
ants explaining the bulk of it [40]. In a comparison of
genome-wide linkage studies between autoimmune
and inflammatory disorders in ASC, overlap of poly-
morphic markers were statistically significant [8]. For
a comprehensive list of the genes identified, see
http://www.grc.nia.nih.gov/branches/rrb/dna/atsmap.htm.
Where it is conceded that the chromosomal regions

identified in these linkage studies and the specific variants
of genes identified in genetic association studies are quite
often not unique to any one disorder [8]. Specific immuno-
logical genetic assays have been tested in panelled assays to
test both sensitivity and specificity in diagnosing autism.
Using a signature of differentially co-expressed genes that
were enriched in translation and immune/inflammation

function, the authors were able to identify boys with autism
with 83 % accuracy [85].

Extracellular mediators
Maternal-foetal transfer
The involvement of an inflammatory pathogenesis in
ASC likely originates during the gestational period [59].
Autoantibodies are transferred from the mother to the
child during pregnancy and are associated with a num-
ber of factors that affect both pregnancy and neonatal
outcome [100]. In a cohort of mothers of children with
ASC, autoantibodies have been detected against critical
neuronal components of foetal brain tissue samples
[109] as well as transfer of maternal neuro-specific pro-
teins [23]. These studies identified a range of unknown
protein targets ranging from 30 to 250 kilodaltons (kDa)
in size. Consecutive independent studies have identified
autoantibodies that bind to novel proteins of 37, 39, and
73 kDa in size [39, 104].
A number of models have been hypothesised to ex-

plain the transfer of anti-foetal brain autoantibodies [58].
In one study, immunoglobulin G (IgG) isolated from
mothers with children with ASC was transferred into
rhesus macaque monkeys during mid-gestation and re-
sulted in distinct behavioural changes in the offspring. In
particular, the monkeys spent significantly less time in
contact with their peers and spent more time in a non-
social state. This was attributed to the specific IgG from
mothers of children with ASC infusion and not observed
in monkeys receiving IgG from control donors or mon-
keys that were saline treated [7, 65]. These observations
have been replicated in mice [15, 93]. Whether the
transfer of these auto-antibodies during gestation plays a
role in the pathogenesis in ASC remains uncertain;
however, it is clear that there is a potential association.
Brimberg et al. [13] describes mothers of an ASC child be-
ing found to be four times more likely to harbour anti-
brain antibodies than other women of child-bearing age.
Fundamentally, these processes may have a significant im-
pact on neurodevelopment. Supporting this view is a re-
cent study from Braunschweig et al. [11] who have
identified that lactate dehydrogenases A and B (LDH),
cypin, stress-induced phosphoprotein 1 (STIP1), collapsin
response mediator proteins 1 and 2 (CRMP1, CRMP2),
and Y-box-binding protein comprise the seven primary
antigens of maternal autoantibody-related (MAR) autism.
This built on previous work which introduced the concept
of studying the maternal plasma antibodies against both
the maternal and fatal brain [12, 24, 87].
A number of animal studies have demonstrated that

placenta to foetus transport can alter development. Spe-
cifically, Lin et al. [63] used P. gingivalis in mice to dem-
onstrate that maternal immune system stimulation can
lead to elevated levels of pro-inflammatory cytokines in

Table 1 Summary of contributing immunological factors in ASC

Level of biological
processes

Immunological factors involved

Genetic IFN-γ, Toll-like receptors, T-cell receptor

Extracellular mediators Maternal antibodies, cytokines and
chemokines

Cell surface proteins Human leukocyte antigen, Toll-like
receptors

Intracellular signalling mTOR, PTEN, NF-κB

Neural changes Neuron density, glial proliferation
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both the placenta and amniotic fluid, whilst at the same
time decreasing the major anti-inflammatory cytokines
TGF-β, IL-4, and IL-10. Maternal inoculation with
Poly(I:C), as well as lipopolysaccharide (LPS), also in
mice, have resulted in the animal displaying behavioural
characteristics in keeping with ASC, including pre-pulse
inhibition deficits, working memory deficits, and social
interaction deficits [80]. Blocking the action of these
pro-inflammatory cytokines during maternal infection
was observed to inhibit the development of such behav-
iour [52, 80]. Maternal LPS administration upregulates
both tumour necrosis factor-alpha (TNF-α) and IL-1β
mRNA expression in the foetuses of pregnant rats in a
dose-dependent manner [38].

Cytokines and chemokines
Cytokines and chemokines are pleiotrophic proteins that
coordinate the host response to infection as well as me-
diate normal, ongoing communication between cells of
non-immune tissues, including the nervous system [27].
As a consequence of this dual role, cytokines induced in
response to an adverse stimuli (i.e. maternal infection or
prenatal hypoxia) can profoundly impact fetal neurodeve-
lopment. Aberrant levels of proinflammatory cytokines,
interleukin 6 (IL-6), TNF-α and monocyte chemotactic
protein-1 (MCP-1), not only in brain specimens and cere-
brospinal fluid (CSF; [90, 101]) but also in amniotic fluid
[1], index an active inflammatory process both in children
and adults with ASC. These molecules act to increase im-
mune cell recruitment and proliferation. Immune path-
ways are activated by proinflammatory cytokines such as
TNF-α and IL-6 that stimulate the nuclear translocation
of various transcription factors, including NF-κB that sub-
sequently results in the potentiation of the immune re-
sponse [81]. This is tightly controlled in acute infection
and lasts for a limited time. However, the presence of such
molecules in the absence of an acute stimulus is an atyp-
ical response. An atypical inflammatory response has been
observed in peripheral samples to show similar changes
[56] as well as decreases in anti-inflammatory protein IL-
10 [56]. In a larger multi-analyte profiling (MAP) analysis,
Suzuki et al. [98] reported from a total of 48 analytes ex-
amined, the plasma concentrations of IL-1β, IL-1RA, IL-5,
IL-8, IL-12(p70), IL-13, IL-17, and growth regulated
oncogene-alpha (GRO-α) were significantly higher in indi-
viduals with ASC compared with the corresponding values
of matched controls, after correction for multiple compar-
isons. Upregulation of inflammation-related molecules
has also been found to be characteristic for adult males
(but not females) with Asperger syndrome [95]. In mid-
gestation maternal serum, elevated concentrations of IFN-
γ, IL-4, and IL-5 were significantly associated with a 50 %
increased risk of ASC, regardless of ASC onset type and
the presence of intellectual disability [45].

The main issue surrounding the reporting of serum
results is that they show considerable within- and be-
tween-group variability. As such, the subtle differences
found may indicate the presence of separate subgroups of
the condition [60]. For example, statistical clustering ana-
lysis on large-scale clinical data suggests the presence of
subgroups with ASC characterised by co-occurrence of in-
fectious disorder [31], which could be related to physio-
logical atypicality related to inflammatory processes.
Further analysis using appropriately powered studies will
be required in order to gauge the potential explanatory
power of this hypothesis.

Cell surface proteins
In contrast to cytokines and chemokines, major histo-
compatibility complex (MHC) family members have very
short intracellular domains not thought to function in
intracellular signalling cascades, but instead by interact-
ing with a variety of receptors during cell-mediated im-
munity [92]. Together with TLRs, they form a key role
in activity-dependent brain development and plasticity
as well as regulating the immune response [84]. Specific-
ally, it has been observed that (MHC) class I molecule
H2-D(b) is essential for synapse elimination in the reti-
nogeniculate system [62, 67].
Genetically, immune dysfunction in ASC has been

suggested to included the MHC region, as this is an im-
munologic gene cluster whose gene products are class I,
II, and III molecules. Class I and II molecules are associ-
ated with antigen presentation. The human leukocyte
antigen (HLA) genes are among the strongest predictors
of risk for autoimmune conditions. Some studies have
observed that different HLA haplotypes are associated
with neurodevelopmental conditions such as ASC [19, 55]
and schizophrenia [94]. Stubbs et al. [97] initially demon-
strated that mothers of children with ASC share HLA
haplotypes with their children more often than in non-
affected pairs. Recent evidence has suggested that impair-
ments of innate immunity, originating with cell surface
proteins, may play an important role in ASC. Enstrom
et al. [33] demonstrated an improved responsiveness to
signalling via select TLRs: TLR 2, TLR 4, and conversely a
decreased production of cytokines following stimulation
of TLR 9.

Intracellular signalling pathways
Another distinct pathway to be implicated in ASC is a
well-known family of transcription factors, the nuclear
factor kappa B (NF-κB), which is one of the key players
in the regulation of inflammatory responses [77, 81].
This transcription factor is constitutively expressed in
the cytoplasm and is inhibited by inhibitor κB (I κB),
which binds NF-κB, masking its nuclear localization sig-
nal and retaining it in the cytoplasm [44]. NF-κB activity
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is attributed to Rel/NF-κB family proteins forming
homodimers and heterodimers through the combination
of the subunits p65 (or RelA), p50, p52, c-Rel, or RelB
[81]. Cytokines, chemokines, and reactive oxygen species
are among a number of key mediators that induce NF-κB
by activating IκB kinases [77]. These phosphorylate IκBα,
leading to its polyu biquitination and degradation [43],
allow NF-κB to migrate to the nucleus, where it activates
the transcription of various proinflammatory genes.
NF-κB has been found to be aberrantly expressed in

the orbitofrontal cortex in postmortem studies of adults
with ASC [107]. Expression was most abundant in
microglia followed by astrocytes compared to neurons.
However, samples from other frontal lobe or cerebellar
samples have not shown similar increases [64] suggest-
ing a localisation of aberrant expression. Peripherally,
NF-κB was upregulated in TNF-α and LPS stimulated
peripheral blood monocytes (PBMCs) [71]. The upregu-
lation of expression was found to be similar in that
Young et al. [107] reported a 2.9-fold increase in NF-κB
expression centrally compared to a 2.2-fold increase
reported peripherally [71]. The significance of this
similarity is difficult to ascertain as there is significant
heterogeneity of brain parenchyma in response to inflam-
matory stimuli [108]. The implication of the NF-κB signal-
ling pathway in ASC further supports a potential role for
neuroinflammation. Further work is needed to identify
whether upregulation of NF-κB plays a role in initiating
the signalling cascade or whether it is a result of aberrant
stimulation.

Neuroanatomical changes
The ultrastructural morphology in ASC has been de-
scribed as having atypical microglial and astroglial acti-
vation [101]. Prominent histological changes have been
described in the cerebellum, characterised by a patchy
loss of neurons in the Purkinje cell layer (PCL) and
granular cell layer (GCL) [101] as well as a reduction in
neuron number in the amygdalae and fusiform gyrus
[89]. Glial activation has been widely observed through-
out a number of independent studies. Vargas et al. [101]
observed an increase in glial fibrillary acidic protein
(GFAP) concentration in the white matter of the middle
frontal gyrus (MFG) and anterior cingulate gyrus
(ACG). An increased ratio of CD11c-positive, mature
(highly active) microglia was observed in the orbitofrontal
cortex and showed strong correlation with cell signalling
molecules [107]. Microglial activation and increased
microglial density was also observed in the dorsolateral
prefrontal cortex in ASC [69]. Morphological alterations
included somal enlargement, process retraction and thick-
ening, and extension of filopodia from processes [69].
They also described a significant increase in microglial
somal volume in the white matter. Microglial cell density

was increased in the grey matter with non-significant
trends in somal volume [69]. A recent study by Paolicelli
and Gross [78] suggests a central role for microglia in syn-
aptic pruning, a process that has been suggested to be ab-
errant in the developing brain in ASC [22].
Magnetic resonance spectroscopy (MRS) has provided

significant insight into the ultrastructural morphology in
ASC. Myo-inositol (Ins) is a metabolic compound lo-
cated mostly in astrocytes. High Ins levels are thought
to indicate an increase in astrocyte populations and
are particularly abundant in neuroinflammation [10].
Interestingly, increased Ins levels have been demonstrated
to impact on performance IQ scores in individuals with
ASC [37].
The resonance group attributed to the glutamine-

glutamate-GABA complex (Glx) includes contributions
from both glutamate and its precursor glutamine. Very
little glutamate penetrates the blood–brain barrier, so
local synthesis is essential. De novo synthesis is mediated
mainly by astrocytes, and as such, in vivo levels can be
altered in neuroinflammation [61]. Glutamate synthe-
sised by astrocytes is converted to glutamine via the en-
zyme glutamine synthetase and exported to neurons via
multiple transporters [26]. In neurons, glutamine is
reconverted into glutamate using the mitochondrial en-
zyme phosphate-activated glutaminase and then packaged
into synaptic vesicles for release [61]. Release of glutamate
initiates signalling events in excitatory neurotransmission;
transmission is terminated by the removal of glutamate
from the extracellular space, predominantly via astrocytic
glutamate transporters. This overall cycle of synthesis,
release, and recovery of glutamate is referred to as the glu-
tamate–glutamine cycle [50].
DeVito et al. [28] described widespread decrease in

N-acetylaspartate (NAA) and Glx among people with
ASC, with reductions observed in both the cerebral
grey matter and the cerebellum. In a sample of adults
with ASC, there was also a significant decrease in
concentration of Glx, as well as choline, creatine (Cr) and
NAA, in the basal ganglia [51]. A reduction in Glx would
classically be attributed to a reduction in neuron density.
Nevertheless, inflammatory molecules can also contribute
to inhibiting the astrocytic glutamate reuptake [53] and
by inducing changes in glutamate receptor subunit ex-
pression, thus leading to reduced intracellular levels of
Glx [4].

Specificity of neuroinflammation
Neuroinflammation is emerging as a common finding in
neurological and neuropsychiatric phenotypes. Most re-
cently, it emerged as a finding in large genetic analyses of
schizophrenia, bipolar disorder, and major depression [75].
This prompts the question of the specificity of inflamma-
tion as a contributing mechanism in the emergence of
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ASC. Furthermore, it promotes ongoing discussion on
whether this is a causal or reactive process. What is certain
is that, regardless of whether inflammation is specific to a
condition or general to a majority of psychiatric conditions,
if it is present, it should be treated and whether it forms
part of a multisystme pathology, it should be treated and
the response evaluated to observe whether there is a sig-
nificant cognitive change. Clarifying the roles of various
neuroinflammatory processes, causal (aetiological) or react-
ive, in neurodevelopmental conditions, also serves as a use-
ful angle to delineate ubiquitous pathogenetic processes
across all kinds of atypical neurodevelopment from specific
mechanisms or reactive processes that mark one clinical
diagnosis but not others.

Evidence against inflammation as a contributing
mechanism in autism
There have been a few studies that failed to identify
atypical inflammatory activity in ASC [64, 102].
Voineagu et al. [102] detail that the immune changes ob-
served in their study of convergent molecular pathology
have a less pronounced genetic component and thus are
most likely either secondary phenomena or caused by
environmental factors. Some have even gone as far to
say that there is evidence that the immune response is
not overactivated [64]. Whilst these studies are import-
ant, they have not been replicated to the extent of papers
supporting a role for inflammation in the pathogenesis
of ASC. It is also important to consider that the scale of
the inflammatory response is so vast that it is possible to
target inflammatory mediators which may not contribute
to the condition. This is well presented in a recent
meta-analysis looking at the cytokine response in autism
[66]. Where 19 cytokines were assessed, only 7 were ob-
served to have significantly different levels in ASC.

Conclusions
An emerging focus of research into the aetiology of ASC
has suggested neuroinflammation as one candidate
underlying biological model. With over 1000 candidate
genes associated with it, ASC has a strong genetic compo-
nent [70]. Similar to most medical conditions, however,
there is also a significant environmental component in
place, through gene-environmental interplay such as epi-
genetic mechanisms. The study of inflammation in ASC
provides an excellent opportunity to dissect potential
gene-environmental interplay. Here, we have highlighted
some of the common indications of immunological dys-
regulation as potential contributing pathogenic processes
for, at least certain subgroups of, individuals with ASC.
Nevertheless, it is unclear whether the role of inflamma-
tion in ASC induces epigenetic change, via the activation
of signalling cascades, or whether it is a direct result of
genetic mutation and downstream effects. Whilst there is

a growing body of work to support the role of inflammation
in ASC, the greatest area of weakness in the field is that in
general, the findings tend to be from individual studies and
rarely are these replicated. Future work is needed to dem-
onstrate what are essentially preliminary findings in large-
scale studies. How much of a role, if any, neuroinflamma-
tion has on the emergence of ASC and contributing to its
aetiological heterogeneity remains to be clarified.
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