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Abstract

Background: Alternation of synaptic homeostasis is a biological process whose disruption might predispose
children to autism spectrum disorders (ASD). Calcium channel genes (CCG) contribute to modulating neuronal
function and evidence implicating CCG in ASD has been accumulating. We conducted a targeted association
analysis of CCG using existing genome-wide association study (GWAS) data and imputation methods in a
combined sample of parent/affected child trios from two ASD family collections to explore this hypothesis.

Methods: A total of 2,176 single-nucleotide polymorphisms (SNP) (703 genotyped and 1,473 imputed) covering
the genes that encode the α1 subunit proteins of 10 calcium channels were tested for association with ASD in a
combined sample of 2,781 parent/affected child trios from 543 multiplex Caucasian ASD families from the Autism
Genetics Resource Exchange (AGRE) and 1,651 multiplex and simplex Caucasian ASD families from the Autism
Genome Project (AGP). SNP imputation using IMPUTE2 and a combined reference panel from the HapMap3 and
the 1,000 Genomes Project increased coverage density of the CCG. Family-based association was tested using the
FBAT software which controls for population stratification and accounts for the non-independence of siblings
within multiplex families. The level of significance for association was set at 2.3E-05, providing a Bonferroni
correction for this targeted 10-gene panel.

Results: Four SNPs in three CCGs were associated with ASD. One, rs10848653, is located in CACNA1C, a gene in
which rare de novo mutations are responsible for Timothy syndrome, a Mendelian disorder that features ASD.
Two others, rs198538 and rs198545, located in CACN1G, and a fourth, rs5750860, located in CACNA1I, are in CCGs
that encode T-type calcium channels, genes with previous ASD associations.

Conclusions: These associations support a role for common CCG SNPs in ASD.

Keywords: Autism spectrum disorders, Calcium channel genes, Common variants, Imputed SNPs, Association
studies
Background
Autism spectrum disorders (ASD) are a group of neuro-
developmental traits characterized by behavioral symp-
toms in three domains: deficits in communication skills,
deficits in social skills, and the presence of restricted re-
petitive behaviors [1]. ASD prevalence is currently esti-
mated at 1/88 children (http://www.cdc.gov/media/
releases/2012/p0329_autism_disorder.html), with a 4:1
ratio of boys to girls [2]. A recent twin study indicates
that ASD is heritable, but its etiology is likely to include
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both genetic and environmental factors and their inter-
actions [3]. All studies indicate that the etiology of ASD
is likely to be very heterogeneous, and most predisposing
genetic and environmental risk factors are currently un-
identified. Recent whole-genome exon sequencing stud-
ies of ASD samples estimate that as many as 100 to
1,000 genes may be involved [4].
The current hunt for ASD genes is focused on whole

exome sequencing to identify rare de novo mutations in
simplex families [5,6]. In contrast, we hypothesize that
targeted association analyses of common variants in
ASD candidate genes can provide complementary infor-
mation that is valuable. We report herein an association
study that examines the family of calcium channel genes
This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

http://www.cdc.gov/media/releases/2012/p0329_autism_disorder.html
http://www.cdc.gov/media/releases/2012/p0329_autism_disorder.html
mailto:rcantor@mednet.ucla.edu
http://creativecommons.org/licenses/by/2.0


Lu et al. Molecular Autism 2012, 3:18 Page 2 of 9
http://www.molecularautism.com/content/3/1/18
(CCG) that is supported by: (1) biologic insights into the
roles of these genes in the brain [7]; (2) evidence derived
from a Mendelian disorder that features ASD [8]; and
(3) several previous more limited linkage and association
studies of ASD.
Biological support for a role of CCG in autism derives

from their role in the brain [7]. During depolarization,
voltage-gated Ca2+ channels mediate influx of calcium
into neurons, eliciting a number of calcium-modulated
functions including neurotransmitter release, intracellu-
lar signaling, and gene transcription. The channels are
composed of a central pore-forming α1 subunit that
interacts with other auxiliary and regulatory subunits:
α2δ, β, and γ. The α1 subunit, which is the largest, forms
the Ca2+ channel selective ‘pore’ that determines calcium
selectivity. Identified by their calcium current types, the
10 α1 subunits are clustered into three subfamilies
denoted by Cav1, Cav2, and Cav3, respectively. Table 1
lists the gene names, their channel names, the types of
calcium currents, and their gene expression patterns [9].
We reasoned that given the central role for α1 subunits
in forming the pore essential for calcium channel func-
tion, variants in this group of CCG might affect neuronal
calcium entry and contribute to ASD susceptibility. A
survey of the expression pattern for each of the subunits
in human brain demonstrates that each is present in
neurons of the cerebral cortex, supporting their rele-
vance as candidates for analysis in ASD [10].
The most salient prior genetic evidence implicating

CCG in ASD comes from a CACNA1C gene mutation
Table 1 10 α1 subunit calcium channel genes tested for assoc

Gene symbol (Chrom band) Channel Current typea Most dominant

Cav1 sub

CACNA1S (1q32) Cav1.1 L MD

CACNA1C (12p13.3) Cav1.2 L MD

CACNA1D (3p14.3) Cav1.3 L NCX

CACNA1F (Xp11.23) CaV1.4 L Amygdala

Cav2 sub

CACNA1A (19p13) Cav2.1 P/Q CBC

CACNA1B (9q34) Cav2.2 N MD

CACNA1E (1q25-q31) Cav2.3 R Striatum

Cav3 sub

CACNA1G (17q21) Cav3.1 T MD

CACNA1H (16p13.3) Cav3.2 T Striatum

CACNA1I (22q13.1) Cav3.3 T NCX
aCurrent types were defined based on different properties in biophysical and pharm
CBC Cerebellar cortex; L Long lasting; MD Mediodorsal nucleus of the thalamus; N N
cell; Q Indicating different toxic sensitivity and inactivation rate from the P-type in α
that results in Timothy syndrome (TS), a Mendelian
disorder with delayed repolarization of the heart following
a heartbeat [12]. TS features ASD along with deficits in
language and social development [13]. It is caused by a
de novo missense mutation in the eighth exon of
CACNA1C that encodes the alpha 1C subunit proteins of
an L-type voltage-gated calcium (Ca2+) channel (high volt-
age activation and slow voltage-dependent inactivation
with long-lasting currents). Additional genetic support of
a role for CCG in ASD comes from the association with
ASD of a single-nucleotide polymorphism (SNP) in the
CACNA1G gene encoding a T-type Ca2+ channel subunit
[14] (transient duration of opening) detected in an analysis
of parent/child ASD affected trios from 284 nuclear multi-
plex families with only affected boys from the Autism
Genetics Research Exchange (AGRE) collection. CAC-
NA1G is located within a chromosome 17-linked region
(17q11-21) that has been identified and formally replicated
in families with only affected boys [15,16]. Activities of T-
type Ca2+ channels are associated with neuronal firing in
the brain [17]. An additional T-type CCG, CACNA1H, has
been implicated in ASD through previous gene sequen-
cing studies. Heterozygous missense mutations were iden-
tified in six out of 461 individuals with ASD from the
AGRE panel [18]. This gene is expressed in many regions
of the brain that exhibit abnormal sizes in individuals with
ASD [19]. The mutations identified alter Cav3.2 channel
function by decreasing voltage sensitivity, slowing channel
activation, and disrupting channel inactivation, causing
sustained large calcium currents [12].
iation with ASD

brain expressed regiona Cells and tissues with gene expression in
addition to brain

family

Skeletal muscle; transverse tubules

Cardiac myocytes; smooth muscle myocytes;
endocrine cells; neurons

Endocrine cells; neurons; cardiac cells and
pacemaker cells; cochlear hair cells

Retina; spinal cord; adrenal gland; mast cells

family

Neurons

Neurons

Neurons

family

Neurons; smooth muscle myocytes

Neurons; cardiac and smooth muscle
myocytes

Neurons

acological analysis.
either long nor transient lasting; NCX, Areas of neocortex; P, Cerebellar Purkinje
1A subunit [11]; R Resistent; T Transient lasting.
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Recently, exon sequencing has identified de novo
mutations in two other CCGs, CACNA1D and CACNA1E,
in a sample of 209 sporadic ASD families that have no
previous history of ASD or its related phenotypes [20].
CACNA1I was previously implicated in ASD by a GWAS
analysis that applied a noise reduction approach to boost
statistical power (GWAS-NR) in a combined sample of
597 Caucasian ASD families collected by the Hussman
Institute for Human Genomics (HIHG) and 696 AGRE
multiplex families [21]. A haplotype block in CACNA1I
was associated with a P value of 1.8E-05.
In the current study we assess the potential role of

CCG in ASD by focusing on 10 genes that encode α1
subunits. A dense panel of SNPs is tested for association
with ASD in the combination of two study samples
ascertained for families with ASD with genotypes avail-
able through ongoing studies of accumulated and public
GWAS data: 543 multiplex ASD families from the
AGRE repository [22] and 1,651 families from the
Autism Genome Project (AGP) [23]. SNP coverage of
the 10 CCGs has been extended by SNP imputation, and
association has been tested using the Family Based
Association Test (FBAT) software. Using this approach,
the association analysis is not vulnerable to the effects of
population stratification and is corrected for the non-
independence of sibling pairs. Four SNPs in CACN1C,
CACNA1I, and CACN1G meeting the Bonferroni cor-
rected level of significance were considered to be asso-
ciated with ASD, further supporting the relevance of
CCG to ASD.

Methods
Overall study design
Using GWAS data available to interested researchers
and methods of imputation, a dense panel of 2,176
pruned common SNPs (703 called and 1,473 imputed)
in 10 CCGs was tested for association with ASD using
the FBAT software that corrects for population stratifica-
tion and non-independence of parent/child trios within
nuclear families. With this approach, each SNP is tested
for a transmission ratio that differs significantly from its
expected 50%. The study sample consisted of 2,781
Caucasian parent/child trios, where 1,103 are from 543
AGRE families and 1,678 are from 1,651 AGP families.
Prior to analysis, 10% to 15% of the families where one
or both parents were not Caucasian were identified
using multidimensional scaling analysis and removed to
reduce genetic heterogeneity that could be attributable
to race. SNP imputation was conducted separately in the
AGRE and AGP panels using the IMPUTE2 software
and a combined reference panel from the HapMap3 and
the 1,000 Genomes Project. Allele frequencies and
patterns of linkage disequilibrium were estimated within
each sample for the imputed SNPs. These were compared
for consistency. A Bonferroni correction for the 2,176
SNPs tested was used to define a level of significance of
P <2.3E-05 that was used for association, as we had not
examined the association of any of the genotyped SNPs in
either sample prior to the analyses reported herein.
Study sample and genotyping: AGRE
The AGRE repository is described fully in [22]. It is
composed of nuclear families ascertained for two or
more children with ASD identified by the Autism
Diagnostic Instrument Revised (ADIR) [24]. Monozy-
gotic twins and children with non-idiopathic ASD
such as fragile X, abnormal brain imaging, abnormal
karyotype, neurogenetic disorder, and perinatal insults
were excluded from the panel for the current ana-
lyses. Both parents and the children of 731 families
had GWAS genotyping performed on two platforms:
86% on the Illumina HumanHap 550 BeadChip plat-
form and 14% on the HumanOmni1-Quad BeadChip
platform. Quality control (QC) of SNPs included
removing those with Hardy-Weinberg Equilibrium
P <0.0001, a Mendelian error rate >0.1, or a minor allele
frequency (MAF) <0.01. Multidimensional scaling analysis
[25] was performed to identify the founder ancestry of the
parents, resulting in 543 multiplex Caucasian families
(1,103 trios) for association analysis. Regulatory review,
approval, and oversight of AGRE's human subject research
is provided by Western IRB, an AAHRPP-accredited
Independent Review Board located in Olympia, WA
(AGRE website).
Study sample: AGP
AGP families were ascertained for children with ASD
and collected from more than 50 centers in North
America and Europe and combined into a single panel
for genotyping and GWAS analysis. The individual study
samples that comprise the AGP each comply with the
current laws of the country in which the samples were
collected. The AGRE families that are part of AGP panel
have been excluded from the AGP for the work reported
here. Children with ASD are identified by positive re-
sults on ADI-R [24] and the Autism Diagnostic Observa-
tion Schedule (ADOS) [26]. A total of 1,884 AGP trios
and nuclear families recruited from Phase 2-Stage1 were
genotyped using the Illumina Human 1M-single Infi-
nium BeadChip platform. Similar to the AGRE panel,
non-idiopathic ASD children have been excluded from
analysis. SNPs were filtered using the same QC criteria.
Multidimensional scaling analysis (MDS), equivalent to
that performed for the AGRE families, identified 1,651
Caucasian families (1,678 trios) to be combined with the
543 AGRE families for association analysis.
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Multidimensional scaling: identifying Caucasian families
within AGRE and the AGP
MDS was conducted using the PLINK software to
identify the Caucasian founders separately in the AGRE
and AGP samples. The genetic similarity between N
founders was estimated based on identity by state (IBS)
marker concordance at every fifth marker on the auto-
somal chromosomes. This yielded an N by N similarity
matrix. Principal components analysis was performed to
transform the estimated matrix in order to project the
greatest amount of IBS information in a two dimensional
plot, geometrically clustering the founders with the same
genetic ancestry. Eighty percent of the AGRE founders
were identified as Caucasians and 93% of the AGP foun-
ders were categorized into the AGRE cluster classified as
Caucasian. Both parents had to be classified into this
cluster for the family to be retained in the analysis. A
total of 543 AGRE (1,103 trios) families and 1,651 AGP
(1,678 trios) were classified as Caucasian.

SNP imputation in the 10 CCG: methods and quality
control
Imputation of SNP genotypes is based on genotyped
SNPs that are IBS where two unrelated individuals share
short stretches of their haplotypes from their common
ancestors. Current algorithms for genotype imputation
are based on hidden Markov models (HMM) and in-
clude Beagle [27], MaCH [28], IMPUTE, and IMPUTE2
[29-31]. For the work reported here, imputation was
conducted using IMPUTE2 [30,31] with the CEU (Utah
residents with northern and western European ancestry)
reference panel. For the reference data, a combined
panel from the HapMap 3 and 1,000 Genomes projects
were used [32,33]. All have very high accuracy as indi-
cated by concordance rates of between 94% and 97% for
called and imputed genotypes when masking those that
were called [31]. For haplotype reconstruction, HMM
are used to infer the haplotype phase and impute the
missing genotypes. The models include a matrix of tran-
sition probabilities to allow for the occurrence of recom-
bination between adjacent markers and a matrix of
emission probabilities to mimic the effect of mutation.
To insure the availability of only high quality imputed

genotypes for analyses with IMPUTE2, the developers of
this program filtered the reference Hapmap3 and 1,000
Genomes SNP data with quality control measures and
removed those SNPs with problems as described on their
website (http://mathgen.stats.ox.ac.uk/impute/data_down-
load_1000G_pilot_plus_hapmap3.html). The effect size
was set at 2,000 (−Ne option) to scale the recombination
rates in the HMM. Each imputed marker was assessed by
an information measure that ranged from 0 to 1. The
value of one is achieved when the information from
imputed genotypes equals the information one would
expect if the alleles are genotyped and sampled from the
population. To assign the imputed genotypes for each
individual, IMPUTE2 outputs three posterior probability
scores corresponding to three possible genotypes and
assigns the one with the highest score. Imputed SNPs and
their genotypes were accepted at a measure >0.4 and a
probability score >0.9. SNP pruning was implemented
under PLINK to decrease the redundancy by using the
linkage disequilibrium threshold of R2 ≥0.99. MaCH was
used to validate the imputed SNPs that were found to be
associated with ASD. Imputation of genotypes performed
well in both the AGRE and AGP samples with an overall
95% concordance rate. After SNP pruning of 3,675 mar-
kers, 2,176 SNPs (703 called, 1,473 imputed) remained for
association analysis.
For the associated SNPs that were imputed, an add-

itional quality check was used. The SNP allele frequen-
cies were estimated separately in the AGP and AGRE
samples. The frequency estimates were the same for
each SNP indicating that if there were an error in imput-
ation it was the same in both samples. Then linkage
disequilibrium was estimate for adjacent genotyped
SNPs for the two imputed associated SNPs in AGP and
AGRE separately. These estimates are each very close in
both samples.

Association analysis: family based association test (FBAT)
in the combined AGRE and AGP sample
The FBAT software was used to test for association of
ASD and the panel of 2,176 SNPs. Genetic effects were
assumed to be additive, and the -e option was used to ad-
just for the correlation between sibling marker genotypes
in multiplex families [34]. Markers on X-chromosome for
the CACNA1F gene were also tested using FBAT [35].
The level of significance, P <2.3E-05, was based on a
Bonferroni correction for testing 2,176 SNPs.

Copy number variation, transcription factor binding site,
and brain expression pattern analysis
The University of California Santa Cruz Genome browser
(hg19) was used to identify chromatin immunoprecipita-
tion sites and copy number variations and their associated
phenotypic findings reported to the DECIPHER and ISCA
consortia including the loci identified in this study. Tran-
scription factor binding site consensus sequences were
determined using Tfsitescan (http://www.ifti.org/cgi-bin/
ifti/Tfsitescan.pl). Brain expression patterns were assessed
for each gene using the Human Brain Transcriptome
Atlas (HBT; http://hbatlas.org/pages/hbtd) and GENSAT
databases (http://www.gensat.org/search.jsp). All of the 10
CCG were expressed in brain regions based on the
spatiotemporal gene expression data provided by human
brain transcriptome (HBT, http://hbatlas.org/). Their most
dominant expression regions in brain (Table 1) were based

http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_pilot_plus_hapmap3.html
http://mathgen.stats.ox.ac.uk/impute/data_download_1000G_pilot_plus_hapmap3.html
http://www.ifti.org/cgi-bin/ifti/Tfsitescan.pl
http://www.ifti.org/cgi-bin/ifti/Tfsitescan.pl
http://hbatlas.org/pages/hbtd
http://www.gensat.org/search.jsp
http://hbatlas.org/
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on the data at the age 3 time-point. Eight of them, except
CACNA1S and CACNA1F, were determined as highly
expressed in specific brain regions by considering a log2 of
signal intensity >6 [10]. The regions of enriched gene
expression were confirmed with the mouse in situ expres-
sion in GENSAT.

Results
Table 2 reports the three CCGs containing four SNPs
that pass the criterion for association. Most encouraging
is the association of rs108486653, an imputed SNP within
the CACN1C gene which encodes Cav1.2, a subunit of a
calcium channel that is expressed predominantly in
neurons and cardiac pacemaker cells. A genetic overlap
between ASD, bipolar disorder, and schizophrenia has
been hypothesized [36], and CACNA1C has previously
been associated with bipolar disorder in two GWAS
[37,38]. Most salient, however, is that de novo mutations
in this gene cause Timothy syndrome that has ASD as a
prominent feature. While that very rare causal variant
may not be present in these samples, this association indi-
cates that a more common allele with a frequency of 0.32
in this sample may tag a variant that contributes to the
risk for ASD.
The ratio of transmissions to non-transmissions of the

major allele in this sample of more than 2,700 parent/
child trios, with 5,400 potentially heterozygous and
informative parents is 825:643. This SNP has been
imputed, and since its information measure of nearly 0.9
indicates there is little uncertainty in the imputed geno-
types, we are convinced that the imputed genotypes and
the resulting association are quite accurate. Supporting
this is a detectable Mendelian error rate of <2% in the
AGRE sample and 0 in the AGP sample. The minor al-
lele frequency and the pattern of linkage disequilibrium
with its neighboring SNPs are consistent across the
AGRE and AGP study samples where it was imputed
separately, further supporting the accuracy of its
imputed genotypes. This SNP is not within the eighth
exon of CACN1C, where the Timothy syndrome muta-
tion resides, but is within an intron of the gene.
Figure 1 illustrates the association results of the

imputed and genotyped SNPs within the CACN1C gene.
Table 2 Calcium channel genes associated with ASD

CCG Associated SNP Chromosome/Basepairb

Cav1.2 CACNA1C rs10848653a 12/2,358,200

Cav3.1 CACNA1G rs198538 17/45,997,692

rs198545 17/46,000,610

Cav3.3 CACNA1I rs5750860a 22/38,355,980
aImputed SNP.
bHuman genome assembly HG18.
cT:U, major allele #Transmitted: # Untransmitted.
MAF Minor allele frequency.
Consistent with the view that simplex and multiplex
families exhibit different genetic architecture, the
results are stronger in the multiplex AGRE sample,
which is more likely to have common associated
SNPs than the mixed simplex and multiplex AGP
families that are thought to have more rare variants
with greater penetrance. While the associated SNP
is not within exon 8, this exon shows more SNPs
with what might be considered marginally significant
results in both samples.
The next two associated SNPs reported in Table 2

are in CACNA1G. They have been genotyped in this
study sample, and the genotypes have passed stringent
quality control criteria and the allele frequencies and
patterns of linkage disequilibrium with neighboring
SNPs are consistent across the AGRE and AGP sam-
ples, providing us with confidence in this association.
Although their allele frequencies differ, 0.20 and 0.06,
they exhibit some degree of linkage disequilibrium,
with each other (D’ = 0.83). Neither was associated in
the previous study that implicated this gene, and the
SNP implicated in that study is not associated here
[14], However, this is a much larger study having a
different design and method of analysis. CACNA1G
encodes the Cav3.1 Ca2+ channel subunit in the third
CCG subfamily, a T-type Ca2+ channel, listed in Table 1.
Interestingly, the rs198538 SNP is located within a well-
conserved portion of the genome that can be pulled down
by Egr-1 chromatin immunoprecipitation [39,40].
The fourth associated SNP in Table 2 is rs5750860

in CACNA1I, which is also a T-Type calcium channel
gene with properties similar to those of CACNA1G.
This SNP has been imputed, and again confidence in
the genotypes arises from strong information measure,
low rates of Mendelian errors of 2.3% in the AGRE
sample and 0% in the AGP sample, and consistent al-
lele frequencies and patterns of linkage disequilibrium
with neighboring SNPs in these samples. Prior to this
study, all three T-type CCG were implicated in ASD
[14,18,21], and we thus provide additional supportive
evidence. The unique features of this channel subtype
may eventually help provide insight into the means
by which the T-Type genes could predispose to ASD.
Minor/Major allele MAF T:Uc P value

G/A 0.32 825:643 1.3E-06

T/C 0.20 980:779 1.5E-06

T/G 0.06 359:247 1.8E-05

T/C 0.18 703:535 7.4E-06



Figure 1 Association analysis of genotyped and imputed SNPs in CACNA1C gene in (a) AGRE and (b) AGP samples. CACNA1C gene SNP
associations showing the relative locations of the Timothy Syndrome mutation and the SNP with the strongest association in the AGRE sample
(upper panel) and the AGP sample (lower panel).
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Discussion
Prior to the availability and widespread adoption of
GWAS technology, heritability estimates for complex
traits and disorders were derived from phenotypic corre-
lations in relative pairs (primarily twins) [41]. Heritabil-
ity estimates have not been explained by the additive
combinations of SNPs associated at the genome-
wide significance level of 5.0E-8 for most traits [42]. In
response, there has been a growing interest in incorpor-
ating GWAS SNPs that show some, but not a significant,
association, into estimates of the genetic contributions
to complex traits and disorders [21,43]. That is, investi-
gators are hypothesizing that the ‘missing heritabilities’
Table 3 Copy number variants encompassing associated SNP

Channel/Gene symbol SNP Numbers of deletions/du

Cav1.2 rs10848653 12/13

CACNA1C

Cav3.1 rs198538 3/3

CACNA1G rs198545 3/2

Cav3.3 rs5750860 0/10

CACNA1I
aReported from two consortia: ISCA (International Standards for Cytogenomic Array
Phenotype in Humans Using Ensembl Resources) reports chromosomal imbalance i
(http://genome.ucsc.edu/cgibin/hgc?hgsid=290095779&c=chr12&o=565412&t=3707
for complex disorders might be found in the polygenic
contributions of SNPs with positive associations that do
not achieve a genome-wide level of significance because
their effects are too small to provide adequate statistical
power in the available study samples for their detec-
tion [44]. Studies applying the polygenic model now
report evidence of missing heritability among the ‘non-
significant associations’ [45]. Here we consider the same
possibility of smaller undetected effects among the non-
significant GWAS SNPs, but take a different approach to
their detection and application to ASD. We focus on a
specific set of genes that exhibit biological plausibility and
support along with prior evidence of association with
s

plicationsa Relevant CNV phenotypes

Autism, developmental delay, speech delay

Microcephaly, mental retardation/developmental delay

Microcephaly, Mental retardation/developmental delay

Mental retardation/developmental delay

s) reports pathogenic CNV and DECI (Database of Chromosomal Imbalance and
n patients
025&g=decipher&i=252381).

http://genome.ucsc.edu/cgibin/hgc?hgsid=290095779&c=chr12&o=565412&t=3707025&g=decipher&i
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ASD. Ten CCG are tested using the best study samples
and analytic approaches available for these endeavors.
Two existing GWAS are combined into one sample,
providing more than 2,700 parent/affected child trios for
analysis, and SNP imputation is conducted to insure ad-
equate coverage of the genes. Four associated SNPs in
three CCG exceeded the level of significance.
Prior evidence for our focus on CCG derived from the

ASD component of TS, which results from a de novo
mutation in the eighth exon of a CCG, CACNA1C. We
hypothesized that this genetic cause of a Mendelian form
of ASD may be part of a family of genes that could predis-
pose to the genetically complex idiopathic forms of ASD.
To pursue this we tested the 10 CCGs that encode the lar-
gest subunits, α1, of 10 distinct Ca

2+ channels. Biologically,
these channels couple depolarization to a vast number of
intracellular neuronal functions modulated by calcium,
including signaling, gene transcription, and neurotrans-
mitter release [46]. The α1 subunit contains both the
voltage-sensing mechanism and forms the calcium-
selective pores, mediating the calcium current [12,47].
Mutations in CACNA1C cause a significant increase in
the sustained intracellular calcium rise, leading to changes
in gene expression and altered neuronal differentiation,
partly through changes in early growth response protein
(Egr1) transcription factor levels [48]. The associated SNP
we detected in CACNA1C may be tagging such a muta-
tion or a variant with a lesser effect.
The rs198538 SNP in the CACNA1G gene identified

in this study is located within a portion of the genome
that can be pulled down by Egr1 chromatin immunopre-
cipitation [39]. Its association with autism comes from
its fellow family member, Egr2/krox20. Egr2 was identi-
fied as the most downregulated gene in a study that ana-
lyzed lymphoblastoid cell line gene expression among
monozygotic autistic twin sets in the AGRE cohort [49].
Most interestingly, the rs198538 SNP forms part of a
consensus binding site for the transcription factor aryl
hydrocarbon nuclear receptor translocator (Arnt),
CACGCW (Tfsitescan). Within this binding site, CACG-
CACTG, the second C (underlined) is conserved across
evolution and is polymorphic in the population, corre-
sponding to the rs198538 SNP. A genetic association has
been found between the ARNT2 gene and both autism
and Asperger syndrome [50]. In addition, rare variants
in the ARNT2 gene have been identified in patients
with ASD [6,51]. A member of the basic-helix-loop-helix
(bHLH-PAS) superfamily of transcription factors,
ARNT2 is highly expressed in brain [52] and forms
complexes with hypoxia inducible factor (HIF1alpha)
and the arylhydrocarbon receptor (AHR) to mediate
neuronal responses to oxygen and xenobiotics [53].
While the ability of ARNT2 to participate in AHR-
mediated responses to xenobiotics is still under debate,
this SNP variant and those in ARNT2 may contribute to
the environmental influences observed in ASD [54]. Fur-
thermore, as in Timothy syndrome, excessive calcium-
mediated signaling may underlie the brain pathology in
carriers of common SNP or rare single nucleotide var-
iants in calcium channels. The recent findings of a de
novo synonymous variant in CACNA1G in an ASD pro-
band from the Simons Simplex Collection [4] and mis-
sense mutations in CACNA1H in six of 461 individuals
with ASD [18] further supports the potential for the
genes identified in this study and their variants in ASD.
The genetics of ASD is highly complex and heteroge-

neous. However, Mendelian disorders such as Timothy
syndrome, Joubert syndrome, Rett syndrome, and
Fragile-X syndrome, and some chromosome abnormal-
ities have ASD as a key feature [55], thereby suggesting
additional candidate genes and their gene families amen-
able to targeted association testing in available GWAS
samples. In particular, copy number variants including
the genes identified in this study are associated with a
number of phenotypic findings, including autism, as
listed in Table 3. Complex disorders that are likely to
share some risk genes, such as schizophrenia and bipolar
disorder, also provide a substantial list of potential can-
didates for analysis [36]. Here, we sought to investigate
the role of CCG selected because they are enriched in
brain, associated with idiopathic ASD, and relevant to
Mendelian disorders such as TS that feature ASD or
complex diseases such as bipolar disorder. As both L-
type and T-type calcium channel genes exhibited associ-
ation with ASD, it is likely that subtype-specific abnor-
mal activities of Ca2+ channels could affect distinct
neuronal functions. Sequencing of the genes identified in
this study and functional studies of the linked poly-
morphisms may further expand our understanding of
the recurring association of autism and calcium channel
function.
Conclusions
Biological plausibility and genetic support for the role of
CCG in ASD led us to conduct the current targeted as-
sociation study with GWAS data from AGP and AGRE.
Four associations in three CCGs provide evidence of a
role for common alleles in CCGs as predisposing risk
factors for ASD. Follow-up studies of other candidate
CCGs may reveal a more complete picture of the role of
the CCG in ASD. CCG sequencing studies of ASD pro-
bands can be used to assess the role of rare variants in
these genes.
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